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Abstract

In wireless communication scenarios, noise and interference can impair the quality of a com-
munication. To mitigate this, a dynamic spectrum manager can allocate robust and low inter-
ference spectrum, where low latency communication is possible. To make optimal allocation
decisions with respect to the application specific requirements, the spectrum manager needs
context information about the spectral environment.

In this work a context reasoner was designed and implemented, which provides the spec-
trum manager with relevant context information about the spectral environment. A fuzzy rea-
soning approach was chosen to implement the context reasoner, due to the ability of fuzzy
inference systems to handle noisy sensor data and uncertainty. Proof of concept rules for the
dynamic spectrum access scenario were designed, implemented and validated.
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Zusammenfassung

Bei der drahtlosen Kommunikation können Störer und Interferenzen die Qualität der Kommu-
nikation beeinträchtigen. Um dem entgegenzuwirken kann ein dynamic spectrum manager
den Kommunikationsteilnehmern robustes und störfreies Spektrum zuweisen, auf dem Kom-
munikation mit niedriger Latenz möglich ist. Um bezüglich der anwendungsspezifischen An-
forderungen optimale Zuweisungsentscheidungen zu treffen, benötigt der spectrum manager
Kontextinformationen bezüglich des Spektrums.

In dieser Arbeit wurde ein context reasoner entworfen und implementiert, welcher dem
spectrum manager relevante Kontextinformationen über das Spektrum liefert. Aufgrund der
Fähigkeit mit rauschbehafteten Messdaten und Unsicherheit umzugehen, wurde die Fuzzy
Inferenz als Grundlage für den context reasoner gewählt. Proof of Concept Regeln für das
dynamic spectrum access Szenario wurden entworfen, implementiert und validiert.
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1 Introduction

1.1 Introduction and Motivation
This thesis addresses the problem of enabling low latency, low interference, robust and reliable
communication in wireless dynamic spectrum access (DSA) environments, where radios can
dynamically change spectral bands rather than being confined to statically allocated frequen-
cies. First, the problem is motivated by the example of use cases and scenarios that require
low latency and robust communication, after which the solution approach taken in this work
is introduced.

Motivation and Use Cases

Within the context of the upcoming 5G standards, terms such as ultra low latency and zero-
latency are being used with increasing frequency [1]. The commonly cited latency figure as-
sociated with these terms is 1 ms [2]. Such stringent latency requirements are motivated by
application scenarios such as industrial manufacturing and automation, self-driving cars, or
remote surgery [3].

In indoor industrial environments where wireless M2M (Machine to machine) communica-
tion is prevalent, the high number of wireless communications systems in close proximity can
cause high interference levels which make wireless communication in these areas difficult to
impossible. Additionally, non-communicative electric devices, especially large machinery, can
also cause interference. The consequence of high interference levels is a high error rate, many
lost messages and required retransmissions. In an industrial automation scenario where robotic
assembly systems operate autonomously, delayed or lost control messages and high error rates
could lead to financial, material and human damage.

Self-driving cars require low latency and reliable communication to increase safety on roads,
where failure to receive messages indicating hazardous situations ahead would have serious
consequences. In remote surgery applications low latency and high reliability are required for
real-time tactile feedback. Several other use cases for low latency and high reliability commu-
nication have been identified and outlined in [4].

Approach

The problem of enabling low latency and robust communication in wireless environments
can be approached with a dynamic spectrum manager, observing the spectral environment by
receiving sensing information from the communications systems operating in the environment
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2 Chapter 1. Introduction

and allocating spectral bands in which low latency and robust communication is possible.

As part of a previous EU project, QoSMOS (Quality of Service and MObility driven cognitive
radio Systems) [5] and an ongoing Fraunhofer FOKUS project ,FleMMingo (Flexible Wireless
Machine to Machine Communication in Industrial Environments) [6], such a spectrum man-
ager for dynamic spectrum access has been designed and implemented. The spectrum man-
ager receives spectrum access requests from client wireless systems and either grants suitable
spectral bands according to the clients’ requirements or denies those requests. A decision en-
gine implemented within the spectrum manager is responsible for weighing the clients’ request
and making the spectrum allocation decisions.

While the decision engine already implements basic spectrum allocation strategies, there is
a need for more sophisticated ones, which can optimize spectrum allocation with respect to
requirements such as less interference and latency, lower error rate, increased bandwidth or
higher spectral utilization efficiency. To optimize the decision making process, the decision
engine needs context information about the spectral environment, based on which it can make
allocation decisions with respect to the clients’ and the application requirements.

In this work a minimum context reasoning engine is designed and implemented to sup-
ply the decision engine in the aforementioned spectrum manager with suitable facts about the
spectral environment. A cognitive rather than an algorithmic approach was chosen because
algorithmic solutions require formal mathematical models of the problem space and the sys-
tem. However, deriving mathematical models that accurately describe real-world systems is
often a very complex or even impossible task [7], as dynamical system generally do not have
closed-form solutions [8].

While this work is framed in the context of dynamically accessing spectrum for low latency
and robust wireless communication, it could easily be reframed to other scenarios. For instance,
instead of radio channels, wired links could be considered, which would require a different set
of context parameters. Furthermore, instead of the target objectives of allocating low latency
and interference links, the requirement could be to provide the most secure link. Both of these
alternative scenarios could be approached in the same way as the originally stated one with a
context reasoning engine.

In the following section the objectives of this work are stated after which an outline of this
thesis is given in Section 1.3.

1.2 Objectives and Scope
This work addresses the problem of dynamic spectrum management by supplying a decision
engine implemented within a spectrum manager with suitable facts about the spectral environ-
ment which allow the decision engine to make spectrum allocation decisions. This problem is
approached by implementing a reasoning engine, operating on context information, inferring
facts about the spectral environment and thus allowing the decision engine to allocate spectrum
that satisfies the QoS (Quality of Service) requirements of the scenario.

Figure 1.1 shows a simplified view of the spectrum manager architecture within which the
context reasoner will operate. The context reasoner receives sensing and utilization reports
from sensors and other measurement devices in the spectral environment. These received data
are evaluated to extract relevant facts to be supplied to a decision engine, enabling it to allocate
available spectrum as indicated by the spectrum portfolio database.
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Figure 1.1: Spectrum manager architecture within which the context reasoner is integrated

The following items have been identified as objectives of this work:

(a) Implementing a proof of concept reasoner capable of processing spectrum portfolios. The
spectrum portfolio is a data format encapsulating information about spectral bands. Be-
sides pertinent characteristics of the frequency band in question, a spectrum portfolio
can also include the usage parameters as well as measurements data of these frequency
bands. Spectrum portfolios are used for communicating actions between spectrum man-
agers and spectrum users as well as for exchanging context information about spectral
bands. The structure of spectrum portfolios and the operations that can be performed
on them has been defined in detail in previous Fraunhofer FOKUS projects mentioned in
the preceding section. However, within this work, the purpose of spectrum portfolios is
limited to identifying spectral bands, by including portfolio identifiers with the outputs
supplied by the context reasoner.

(b) As part of the proof of concept implementation two basic rule-sets shall be set up and
demonstrated. These rule sets should implement the following functionality:

• Infer the best match of spectrum portfolios that will minimize interference for a
given set of constraints. This objective aims to enable robust and low-interference
communication.

• Infer the best match of spectrum portfolios that will maximize the time until increas-
ing interference levels demand to switch over to a different frequency band. This
objective aims to maximize the clients’ sojourn time in a certain frequency band.

(c) Documenting the results achieved, focusing on flexibility and performance of the solu-
tion. The implemented solution should be reusable by other parties and adaptable to
other problems and requirements with minimal effort.

The following items narrow down the scope of this work, distilling the focus of the thesis.
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These are items that are considered out of scope of this work and will therefore be not be
addressed.

• Make spectrum allocation decisions. Making spectrum allocation decisions is a task for
the decision engine which is also implemented within the spectrum manager. The rea-
soner is only responsible for supplying suitable facts to facilitate spectrum allocation de-
cisions.

• Spectrum portfolio manipulation. While it is mentioned in the objectives that a solution
must be able to process spectrum portfolios, this only refers being able to read spec-
trum portfolio data structures and asserting facts about the spectral bands associated
with these portfolios. In particular, set theoretic operations on spectrum portfolios such
as merging and splitting portfolios, as defined in the QoSMOS deliverables [9], will not
be performed within the scope of this work.

1.3 Outline
In the following chapter the state of the art in reasoning is presented and the choice of using a
fuzzy reasoning approach is justified. The other reasoning methods presented are rule-based
reasoning, ontology-based reasoning and artificial neural networks. Section 2.5 gives a short
overview of related work in the field of fuzzy reasoning and in particular in applications closely
related to the one in this work.

Chapter 3 presents and explains the methodology used in this work. In Chapter 4 the out-
put parameters for the context reasoner are defined. After defining the output parameters, a
detailed analysis of the context space of possible input parameters follows in Section 4.2. From
the list of input parameters analyzed in this section, the final input parameters to be used by
the context reasoner are reduced in the following section.

In Chapter 5 the spectrum manager environment in which the context reasoner is to be inte-
grated is presented. After that, the context reasoner architecture is introduced along with the
modules comprising the context reasoner. In Section 5.4 the interfaces for communication be-
tween entities in the spectrum management environment are presented. Various preliminary
considerations, such as uncertainty factors and timing issues, are discussed in Section 5.5.

In Chapter 6, the implementation of the context reasoner is discussed. External software and
libaries used are presented in the first section of the chapter. In the following sections, relevant
implementation details are given. In Section 6.4 a proof of concept fuzzy inference system is
designed and used to demonstrate sample rule sets. The chapter concludes with an evaluation
and a discussion of the performance of the implemented solution.

In the final chapter the thesis is summarized and conclusions are drawn. An outlook is given,
identifying and presenting future work that can be performed to further improve the context
reasoner.



2 State of the Art and Related Work

This chapter introduces state of the art approaches to reasoning. Rule-based reasoners, ontology-
based reasoners, artificial neural networks and fuzzy reasoners are presented and explained.
Following, a short overview of related work is given, to establish a context for the work done
in this thesis.

2.1 Rule-Based Systems
A reasoner can be described as a program that is capable of inferring logical consequences from
a set of explicitly asserted facts and statements. In a rule-based reasoner the inference process
is performed by applying a set of rules to stored facts and axioms in an attempt to model the
human cognitive process [10].

A rule-based engine typically consists of a working memory, a rule-base and an inference
engine, which in turn consists of a pattern matcher, an agenda and an execution engine. These
components are depicted in Figure 2.1

• Working memory: The working memory can be likened to the short-term memory of a
human. It stores the facts and axioms of the system, which are subject to change and
dynamic.

• Rule-base: Following with the analogy, the rule-base or production memory would be
the long term memory. This is where the rules, also called productions, are stored. Unlike
the facts in the working memory, the rules in the rule-base are static. The rules are stored
in the form of IF-THEN clauses, where the part that follows after the IF clause is called
the antecedent and the part that follows after the THEN clause is the consequent of the rule.

• Inference engine: The inference engine is the active component of the rule-based system.
It matches the conditions in the working memory to the rules in the rule-based and then
decides which rules to fire.

While rule-based reasoners operate on rules written in IF-THEN form, resembling condi-
tional clauses in procedural programming languages, it is crucial to understand that the
execution of rules in a rule-based reasoning engines is not done in a procedural fashion.
Rules are fired when the data satisfy the antecedent, regardless of the order in which the
rules appeared in the program.

◦ Pattern matcher: When there are thousands or even millions of facts and rules stored
in the working memory and the rule-base, deciding which rules to fire becomes
a hard problem. The pattern matcher is responsible for evaluating combinations of
facts and rules to determine which rules should be fired, which is the most expensive

5



6 Chapter 2. State of the Art and Related Work

operation in the inference process.

◦ Agenda: The agenda is the component in which the set of rules that are eligible to be
fired at any one point, also called the conflict set, are stored. The inference engines
in rule-based systems implement algorithms, such as the RETE [11] algorithm, that
perform conflict resolution and determine the order in which the rules are to be fired
[10]. Conflict resolution strategies might take into account specificity, complexity or
priorities of rules when deciding the order in which to fire the rules in the agenda.

◦ Execution engine: The execution engine is responsible for executing the action that
is specified in the consequent of a fireable rule. This might range from simply adding
or removing facts to and from the working memory to calling procedures and func-
tions.

[12], [10].

Figure 2.1: Basic components of a rule-based reasoning system [12]

Forward and Backward Chaining
There are two ways in which rules in rule-based systems can be examined. The first one, called
forward chaining, works by first considering the antecedents and the other, called backward
chaining works by first considering the consequents of the rules

The more commonly used method of inference is forward chaining, which can be thought
of as a data-driven approach to inference. The antecedents of rules are examined and the rules
whose antecedents are satisfied by the data in the working memory are fired. Firing rules may
change the facts in the working memory which could in turn lead to more rules being fired.
Rules will continue firing until there are either no more fireable rules or some goal is reached
and the program terminates [13], [12].

Backward chaining, in contrast, can be thought of as a goal-driven approach to inference.
Here the inference engine works backwards from a list of goal or hypotheses to find the set
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of antecedents that must be satisfied to arrive at the desired goals. The rule-base is searched
until a rule is found whose consequent matches a goal or hypothesis in question. If it is not
known whether the antecedent of that rule is true, then that antecedent is added to the list of
goals. This process is repeated until all required antecedents for the initial list of goals and
hypotheses have been found. The backward chaining approach is commonly employed in
automatic theorem provers and in applications where one might want to trace back the steps
that lead to a conclusion. Backward chaining is also employed by expert systems to generate
an explanation of how the system arrived at a particular conclusion [13], [10].

2.2 Ontology-based Reasoning
Perhaps the most commonly used and cited definition of an ontology among computer scien-
tists is the one given by Gruber [14], stating that an ontology is an explicit specification of a
conceptualization of some domain of discourse. This means that an ontology of a domain is
a description of the vocabulary, the concepts and classes, the properties and the relationships
between the concepts and classes in that domain. By creating an ontology, an abstract and
simplified view of the domain of discourse is constructed. A set of instances belonging to the
classes defined in the ontology is usually referred to as a knowledge-base. However, there is
no consensus about where an ontology ends and the knowledge-base begins[15].

The semantic web is the application that is most commonly associated with ontologies by
computer scientists. Within the context of the semantic web, ontologies are used for defin-
ing and exchanging common terminology between agents, enabling them to have a common
understanding of concepts and terms used for describing entities [14].

Figure 2.2 shows an ontology in the domain of family relationships and a knowledge-base of
individual instances conforming to that ontology. The ontology defines three classes, namely
Person, Man and Woman. The classes Man and Woman are subclasses of the Person class, in-
dicated by the filled arrows. The plain arrows represent relationships between classes. Rela-
tionships are read according to the orientation of the arrow. A Person’s father or son are both
members of the Man class whereas a daughter or mother are both members of the Woman
class, for instance. If there is no arrow, the relationship can be read both ways. Numbers and
asterisks at the lines representing the relationships indicate the allowed multiplicity of the rela-
tionships, stating how many instances of that class can have this relationship with instances of
the class at the other end. An instance of the Man class can only be associated with one instance
from the class Person in the father relationship, as people can only have one biological father.
On the other hand, a member of the Man class can be one of many sons of a Person.

On the right side of Figure 2.2 is a knowledge-base with instances from the ontology. Some
knowledge embedded in the knowledge-base is that there is a man named John Smith who
is the father of a woman named Susan Smith, who in turn is the daughter of another woman
named Mary Smith.

Once an ontology has been developed, it can be used to assert facts and make statements
about members in the domain of discourse. These facts and statements can then be understood
by any agent in possession of the ontology definition, which is one of the reasons for developing
and distributing ontologies. Among some of the possible reasons for developing an ontology
are:

• Sharing a specified understanding about a domain of discourse
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• Allowing domain knowledge to be reused

• Making assumptions about and within that domain explicit. [15]

Figure 2.2: An ontology in the domain of family relationships (left) and a knowledge base of instances made
from that ontology (right) [16]

OWL (Web Ontology Language)
OWL is an ontology language specified by W3C (World Wide Web Consortium) and is the de-
facto standard language used to described ontologies. Despite its name, the language is not
restricted to applications on the web. OWL builds on and extends RDF (Resource Descrip-
tion Framework) and RDFS (RDF Schema), which are less powerful languages for describing
ontologies. RDF mainly supports simple predicate statements whereas RDFS extends RDF
to include support for describing subclass and property hierarchies, with domain as well as
range definition of these properties [17]. OWL defines several sub-languages of which OWL-
DL (OWL Description Logic) is the most commonly used one. Ontology languages that are
based on first-order logic without any restrictions have the drawback of possibly not being
decidable. This means that it is possible to create expressions which would take an infinite
amount of time to evaluate, as would for instance be the case when making a statement about
the infinite set of all natural numbers. To avoid undecidability OWL-DL is simply a fragment
of first-order predicate logic, making it less expressive than first-order predicate logic on one
hand but decidable on the other hand [18].

Reasoning over Ontologies
The main reasoning tasks applied in ontology-based reasoning are the following [19]:

• Subsumption: Determines whether a concept or class is subsumed by another concept
defined within the ontology.

• Inference: Extends relationships between concepts by propagating the properties of the
stated relationships. Common properties are transitivity, functionality, symmetry or irre-
versibility.

• Satisfiability: Determines whether the ontology is free of contradictions.

Rule-based reasoning is typically not supported by ontology languages directly. To enable rule-
based reasoning over ontologies and the knowledge-bases formed from those ontologies, sev-
eral extensions to existing ontology languages have been proposed and implemented. SWRL
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(Semantic Web Rule Language) is one such language proposed by W3C [20]. It extends OWL,
adding facilites to enable rule-based reasoning over OWL ontologies. SWRL allows the dec-
laration of rules with antecedents and consequent clauses like those employed in rule-based
systems. The difference to rule-based systems, as presented in the previous section, is that
knowledge does not have to be specifically conceptualized by an ontology in those systems.
In particular, rule-based systems do not explicitly specify means for defining classes, relations
and other concepts which are at the core of ontology-based knowledge-engineering. However,
every knowledge- and rule-based system implicitly or explicitly operates on some conceptual-
ization of the domain of interest [14].

2.3 Artificial Neural Networks
ANN (Artificial Neural Network)s are general methods in machine learning and artificial in-
telligence for learning unknown target functions from input-output pairs. The structure and
functionality of ANNs is loosely based on that of neurons in the human brain.

An ANN consists of neurons connected by weighted links. Weights are the primary means
of storage of information in an ANN. Furthermore, learning in a neural network is generally
accomplished by updating the weights. Figure 2.3 shows a single sigmoid neuron unit from an
ANN. The weighted sum of all the inputs into the neuron is used as the input for the activation

function of the unit. The net input can thus be written as net =
n
∑

i=0
wixi. The activation function

used is the differentiable logistic function σ(y) = 1
1+exp−y and the output of the unit is the linear

combination of inputs applied to the activation function[21].

Figure 2.3: A single neuron unit from an ANN [21]

Feedforward Networks
While there are a variety of network structures that can be employed to build an ANN, the
simplest and most common network structure is the feedforward network. In a feedforward
network, all links are unidirectional and form no cycles, whereas recurrent networks can form
arbitrary topologies and exhibit at least one feedback loop in their network structures, hence
the name recurrent. Feedback loops can be used to implement dynamical behavior and give
the network a memory, enabling applications not possible with regular feedforward network
structures [22]. However, feedforward networks are much simpler to train as they are better
understood than recurrent networks, which can become unstable or oscillate depending on the
input values.

Networks with one or more hidden layers are called multilayer networks and have been shown
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to be universal approximators [23]. Hidden layers enable the network to learn more complex
and higher order functions, than single layer networks [23]. Figure 2.4 shows a multilayer
feedforward network with one hidden layer. The network is fully connected, meaning that
each node in layer n + 1 receives inputs from each node in layer n.

Figure 2.4: Multilayer feedforward network [23]

Learning
The backpropagation algorithm is the most popular algorithm for learning functions in multi-
layer feedforward neural networks. The backpropagation algorithm performs a gradient de-
scent search in the hypothesis space, by propagating the error in the output back through the
network and updating the weights to minimize the error in the learned function. However,
learning a function in a multilayer network is not guaranteed to converge to a global optimum
and is intractable in the worst case [23]. Furthermore, choosing a too small network will result
in the network being incapable of representing complex functions, choosing a too big network,
however, will lead to the network "memorizing" all the training examples rather than learning
the target function and failing to generalize. The latter phenomenon is called overfitting, to
which neural networks are subject, when there are too many parameters in the model.

Capabilities and Applications of ANNs
As already mentioned, neural networks have the ability to learn and generalize functions from
a set of input-output values and their distributed nature allows them to solve large-scale prob-
lems which are currently intractable. Moreover, as the a neural network essentially performs
non-linear regression, they are quite capable of solving problems with noisy and complex input
data, such as sensor measurement data and camera or microphone recordings.

Some characteristics of problems that can be solved by ANNs with the backpropagation
learning algorithm are[21]:

• Input-output pairs: Data is represented by input-output pairs.

• Target function: The target function may be real- or discrete-valued or even a vector of
real- or discrete-valued attributes.

• Errors and noise: The training data may contain errors and noise. Due to the ability
to generalize, ANNs are robust against noise in their training sets. Damaged links be-
tween individual neurons can be handled gracefully, due to the distributed nature of the
network. Extensive damage must be inflicted on the network before its performance is
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degraded significantly.

• Learning time: Long learning time is acceptable.

• Fast evaluation: Once training has concluded, fast evaluation of the internal target func-
tion may be required.

• Transparency: Transparency and the ability of humans to understand the learned func-
tion is not required, as ANNs are essentially black boxes.

• Prior knowledge: The problem does not require human knowledge to be applied, as is
the case in rule-based reasoning.

Neural networks have been used in a variety of applications ranging from self driving cars [24],
to indoor positioning [25] and facial recognition [26]. In recent years there has been ongoing
research and development in the field of deep learning, where companies such as Google use
deep neural networks to solve interesting and complex reasoning problems, such as mastering
the ancient Chinese game of Go, to the level of being capable of defeating professional human
players [27].

2.4 Fuzzy Inference Systems
The previous sections introduced different state of the art methods of reasoning that could
be used to implement the context reasoner component. Rule-based reasoners and ontology-
based reasoners do not possess the inherent capability to handle uncertainty and noisy data.
Reasoning with those reasoners is exact and noisy inputs will corrupt the output. Furthermore,
while rule-based systems and ontology-based reasoners are decidable, they are not tractable
and have an exponential worst-case time complexity [10].

ANNs on the other hand are capable of handling noise and uncertainty well and deliver out-
puts fast once they have been trained. However, there is no simple method to encode human
expert knowledge into ANNs, making them less transparent and more difficult to design for
human domain experts. Furthermore, ANNs require a lot of input-output data to be trained
correctly. Preferably, the data should come from the environment in which the network op-
erates after the training phase. As only synthetically generated data is available in this work,
using ANNs to implement the reasoner would be a suboptimal choice.

The context reasoner implemented in this work is implemented using a fuzzy reasoning sys-
tem. Fuzzy reasoners are inherently capable of handling noise and uncertainty and can also
handle numerical context, thus meeting the requirements set for the reasoning engine. This
section presents the concept of fuzzy logic and introduces fuzzy inference systems.

Fuzzy Sets
Fuzzy sets were proposed by Lotfi Zadeh as a generalization of classical set-theory to define the
concept of degrees of membership in a set [28]. In conventional set-theory, a set is a collection
of entities which form the set. Entities from the universe over which the set is defined are either
members of specific set or they are not. There are no other possible degrees of membership in
classical set-theory other than fully or not at all.

Fuzzy sets expand the theory of classical crisp sets to allow entities to have degrees of mem-
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bership in sets. A fuzzy set A over a universe of discourse U has a membership function µA(u),
which defines the degree of membership of all members u of the universe U in A. the member-
ship function µA : U → [0, 1] completely characterizes the fuzzy set A. It maps each value in the
universe to a degree of membership in A, so that A can be written as the set A = {(x, µA(u))}.
The most commonly encountered membership functions are the triangular, trapezoidal, Gaus-
sian, sigmoidal and linear membership functions [7].

Operations on Fuzzy Sets

Basic operations defined on fuzzy sets and their membership functions are:

• Equality: Two fuzzy sets A and B on the universe U are equal if their membership func-
tions are equal for all elements in U: ∀u ∈ U : µA(u) = µB(u).

• Subset: The fuzzy set A is a subset of B if ∀u ∈ U : µA(u) ≤ µB(u)

• Intersection or t-norm: There are various definitions for the intersection operation on the
fuzzy sets A and B. The most commonly used one is the min operation. ∀u ∈ U : µA∩B =
min(µA(u), µB(u)).

• Union, t-conorm or s-norm: The union of two fuzzy sets A and B also has varying
definitions. The most commonly used one is the max operation. ∀u ∈ U : µA∪B =
max(µA(u), µB(u)).

• Complement: The complement A’ of set A is simply ∀u ∈ U : µA′(u) = 1− µA(u).

Linguistic Variables
A linguistic variable is one which can take the value of words in a language. These values are
called linguistic terms. One example of a linguistic variable is "Age". Possible linguistic terms
of the variable age could be "young", "old" and "very old".

The set of all values a linguistic variable can take is called a term-set, which can have an
infinite number of terms. The term-set for the linguistic variable "Age" could be, T(AGE) =
{young+notyoung+ veryyoung+notveryyoung+ veryveryyoung+ ...+ old+notold+ veryold+
...+middleaged+notmiddleaged+ ...+ extremelyold...}, where + denotes the union of the terms
[29].

Linguistic variables can be defined as fuzzy sets over the universe of discourse. The linguistic
variable "Age" could be defined over the universe U = [0 − 100], with the terms "young",
"middle-aged" and "old" associated with membership functions as shown in Figure 2.5

Hedges are linguistic modifiers such as "very", "somewhat" and "quite". When applied to lin-
guistic terms associated with a membership function, a hedge modifies the membership func-
tion by applying a predefined application-dependent transformation, such as squaring, on the
membership function.

Fuzzy Inference Systems
A fuzzy inference system, also called a fuzzy controller or a fuzzy reasoning engine, uses fuzzy
logic to perform reasoning and control tasks. Figure 2.6 shows the architecture of a fuzzy infer-
ence system. It consists of four basic components, namely a fuzzifier, a rule-base, an inference-
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Figure 2.5: Membership functions for the linguistic variable Age and the terms young, middle aged and old
[30]

engine and a defuzzifier.

• Fuzzifier: The fuzzifier component is responsible for taking the crisp inputs and mapping
those inputs to fuzzy sets, by determining the degree of membership in the fuzzy sets of
the linguistic variables.

• Rule-base: The rule-base holds the heuristic rules that are used by the fuzzy reasoning
system to generate the outputs. The rules are simple IF-THEN clauses.

• Inference engine: The inference engine is the core of the fuzzy reasoning system. It op-
erates on the rules in the rule-base and the fuzzy sets supplied by the fuzzifier module to
derive the fuzzy output sets. A fuzzy rule, IF A THEN B is called an implication, because
A implies B. One commonly used implication operator is min implication, also called
the Mamdani implication, which truncates the membership function of the consequent to
reflect the degree of membership obtained from the evaluation of the antecedent.

• Defuzzifier: The defuzzifier module receives fuzzy sets from the inference engine and
is responsible for transforming those fuzzy sets into crisp values. In the defuzzification
step, the fuzzy sets obtained from the fuzzy inference process are typically weighted and
combined to give a crisp output number. Defuzzification methods most commonly used
are the maximum, centroid and the center of sum of areas methods [7].

Sample Fuzzy Inference Process
The process of fuzzy inference is shortly explained using the example of the tipping problem,
where the percentage to be tipped in a restaurant is determined, based on the quality of the food
and the service. The inputs are a rating between 1 and 10 for the food and the service and the
output is a number indicating the percentage of the bill to be given. The membership functions
for the terms of the input and output linguistic variables can be seen in Figure 2.7. The first
column shows the membership functions for the linguistic terms poor, good and excellent of
the service variable, while those for the food input and the tip output variable are shown in the
second and third column. The following rules are used to determine the amount to be tipped:

1. IF service is poor OR food is rancid THEN tip is cheap.

2. IF service is good THEN tip is average
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Figure 2.6: Architecture of a fuzzy inference system [31]

3. IF service is excellent OR food is delicious THEN tip is generous.

Following is the sequence of steps a fuzzy inference system performs:

1. Fuzzification: The first step taken by the fuzzy inference system is the fuzzification of the
crisp input values. In the example illustrated by Figure 2.7, food is rated with an 8 and
the service is rated with a 3. These inputs are fuzzified by determining their membership
values in the fuzzy sets that are the linguistic terms of the inputs. For instance, the value
3 has a membership of 0 in the fuzzy set of excellent service, whereas the value 8 has a
membership of 0.7 in the set of delicious food.

Next, the rules are evaluated. The first and third rules use OR disjunctions in the an-
tecedent, which in a Mamdani fuzzy inference system is performed with the max opera-
tion. For the third rule the max value of the membership of the input in excellent service
and the membership of the input in delicious food is 0.7.

2. Implication: After the activation values of the antecedents of all rules have been evalu-
ated, the implication method is applied to determine the fuzzy output membership func-
tions. The implication method used in Mamdani inference systems is the min operator.
Performing the min implication with the membership value obtained in the previous
step, causes the output membership function to be clipped at the level of the member-
ship value. In this example, the membership function of the generous linguistic term is
clipped at 0.7 after the min implication step.

3. Aggregation: Once all output membership functions from all rules have been deter-
mined, they are aggregated. The most commonly used aggregation method uses the max
operator, which forms a new output fuzzy set by taking the max value of all the input
fuzzy sets over the range of the universe.

4. Defuzzification: The aggregation step returns single fuzzy set. Defuzzification is per-
formed on this set to obtain a single crisp output value that is the output of the fuzzy in-
ference process. The most popular defuzzification method is the centroid method, which
determines the output to be the center of gravity of the fuzzy set, which can be calculated

as
∫

U µA(u)udu∫
U µA(u)du in the case of a continuous membership function.
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Figure 2.7: The process of fuzzy inference [32]

Advantages of Fuzzy Inference Systems
One advantage of fuzzy systems is that the expert can translate their knowledge to the rules
to be used by the fuzzy system into natural IF - THEN constructs. This greatly simplifies com-
munication between the domain experts and the knowledge engineers. Furthermore, systems
can be described as a combination of numerical and linguistic values, combining the benefits
of purely numerical or linguistic methods.

Fuzzy logic-based solutions can be employed to solve problems for which there are no pre-
cise mathematical descriptions or for which such descriptions are only available for restricted
conditions, as fuzzy systems are capable of approximating any arbitrarily complex non-linear
function, as has been shown in [33]. Additionally, problems for which analytical solutions
would be too computationally complex, can also be solved with the help of fuzzy logic.

The ability of fuzzy systems are to make decisions with imprecise and incomplete informa-
tion and being inherently capable of handling the uncertainty that is associated with natural
language is another desirable characteristic of fuzzy inference systems. Therefore, fuzzy in-
ference systems should be considered when the input-data is noisy, as the inputs to the fuzzy
system may change over a range without significantly changing the output value of the fuzzy
system. This allows fuzzy systems to be robust in the presence of errors caused by noise and
imprecision.

In summary the main advantages of fuzzy systems are:
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• Due to the approximate nature of fuzzy systems, cheap and noisy sensors can be used

• Human expert knowledge and empirical rules can be used instead of formal mathemati-
cal models

• Fuzzy algorithms are robust in the face of highly variable environments and erroneous
and forgotten rules

• Simple and computationally efficient reasoning process

• Shorter development time than systems based on rigorous formal models

• Unlike complex differential equations, fuzzy rules are conceptually simple to understand

• Modeling non-linear functions of arbitrary complexity

• Can be combined with conventional control methods [31]

2.5 Related Work
In [34], [35] and [36] a linguistic fuzzy rule-based engine was used to assess terrain safety for the
purpose of landing site selection in real-time during spacecraft descent. Inputs obtained from
on-board sensors of the spacecraft along with fuel consumption and a measure of scientific
return were used to determine a final score for each possible landing site. The scores for each
landing site were then used to re-target the spacecraft if the original landing site was found to
be dangerous. The final landing site score was obtained by first determining the fuzzy landing
site safety score from the raw sensor data. In a second and third fuzzy reasoning stage the
overall landing site score was determined by taking into account fuel and scientific return of
the site as well as landing site scores of neighboring sites and landing site scores from earlier
times in the descent.

In [36], in addition to inferring scores for different landing sites a certainty score is given.
The certainty score is an indicator of the confidence in the correctness of the inferred landing
site score. The problem of selecting an appropriate landing site from a set of different landing
sites based on sensor data and use case specific criteria is very similar to that of selecting a
frequency band out of a set of bands based on context data characterizing these bands.

In [37], [38] and [39] a fuzzy logic approach was taken for robot navigation on challenging
terrain. A terrain Fuzzy-Rule-Based Traversability Index is inferred with a fuzzy rule set tak-
ing into account terrain characteristics such as roughness, slope and discontinuity. A fuzzy
reasoning approach was chosen rather than an analytical mathematical approach to obtaining
a traversability score due to fuzzy system’s ability to deal with uncertain and imprecise data.
The Traversability Index acquired by process of fuzzy reasoning is similar to the landing site
score in [34].

In [40] Baccour et al. introduce a fuzzy link quality estimator, F-LQE (Fuzzy-LQE). They
argue that existing LQE (Link Quality Estimation) techniques such as, PRR (Packet Reception
Ratio), ETX (Expected Transmission Count), Fourbit and LQI (Link Quality Indicator) [41], only
take into account a single link quality metric and are thus inaccurate. Baccour et al. distinguish
between two classes of LQE techniques, namely hardware-based and software-based. Hard-
ware based LQE metrics such as RSSI (Received Signal Strength Indicator) and SNR (Signal to
Noise Ratio) are those that can be read directly from the transceivers, whereas software-based
LQEs such as PRR or ETX are those that attempt to count or approximate the reception ra-



2.5. Related Work 17

tio or the average number of packet transmissions and retransmissions. F-LQE, on the other
hand, takes into account four link quality properties, namely packet delivery, asymmetry, sta-
bility and channel quality. These properties are each defined in linguistic terms and the overall
quality of the link is obtained by applying a fuzzy rule set to these link quality properties.

Building on the work of Baccour et al. the authors of [42] incorporated the F-LQE technique
proposed in [40] in the WiseRoute routing protocol for wireless sensor networks. Their ma-
jor contribution was proposing an experimental approach to choosing the fuzzy membership
functions in order to maximize the Packet Delivery Ratio of the network.

Jayasri and Hemalatha [43] also built on the work of Baccour et al., proposing a link quality
estimator on the basis of hardware metrics such as RSSI and LQI, using a Kalman filter and
a fuzzy system. The Kalman filter is used to smooth and eliminate measurement noise of the
RSSI values fed into the system.

In [44] Renner et al. developed a link quality estimator that incorporates four link quality
metrics, giving a holistic assessment of the link and its dynamic behavior. This work aims to
improve link quality estimation by including a metric for prediction accuracy and knowledge
about short and long-term behavior of the links by means of the variation and also trend of
the link quality. Long and short-term behavior of link quality is assessed by not only taking
into consideration current values or the average of the last few values but also the variation of
link quality and its trend. Four link quality characteristics are calculated, namely short-term
quality, long-term quality, variation and an indicator of the current trend.

In [45] link quality was assessed by using time-series SNR values by modeling the relation-
ship between SNR and achieved communication data rates. While the data rates over SNR
plots obtained from measurements generally follow the theoretical curve, achieved data rates
still vary greatly for individual SNR values. One measurement shows data rates ranging from 0
to 5 Mbps where the SNR is consistently over 40 dB. Therefore, the authors argue that individ-
ual SNR points are not enough to predict channel quality and suggest a time-series modeling,
assuming that time-series will allow to predict link quality better than individual SNR points.
Both a linear and a non-linear model are investigated, concluding that the non-linear model
outperforms the linear model in prediction accuracy of the link data rate based on measured
SNR values.

The applications of fuzzy reasoning presented in this section show that fuzzy reasoning is a
viable problem solving approach, particularly when formal mathematical models of the prob-
lem are not available or too complex and when human intuition provides a sufficiently good
solution instead.





3 Methodology

This chapter describes the methodology used in this work. The methodology presented here
should enable a reader familiar with the subject matter to independently replicate the outlined
process in order to arrive at similar results. The items presented can be regarded as concrete
work steps that describe the process of developing a solution to the problem at hand. While
the following work steps are enumerated and presented sequentially, it will not be possible
to work through these steps in a purely sequential manner. An iterative approach is needed
where it will be necessary to go back and revisit previous items as requirements and circum-
stances change and new information is acquired.

1. Determine output parameters
As a first step in the methodology the output parameters that will be supplied to the
decision engine as inputs are defined. The output parameters have to be defined with
regard to the objectives and requirements of the problem. Furthermore, the criteria by
which each output parameter was chosen has to be stated.

How: The output parameters are determined with the objectives in mind by asking what
parameters the cognitive reasoner needs to make relevant inferences about the state of a
spectral band.

Why: Starting with the output parameters allows one to approach the problem with the
end goal in mind. This approach simplifies the process of arriving at a solution by en-
abling one to successively work from the desired outputs from which the required inputs
can then be defined.

2. Determine input parameters
After the desired output parameters according to the requirements and objectives have
been defined, the input parameters required to infer the output parameters have to be
defined.

How: The input parameters can be determined by looking at the output parameters and
analyzing the inputs on which the outputs depend. After this analysis the dependency
of each output parameter on other parameters should be defined. Furthermore, the de-
pendencies of input parameters amongst each other must also be analyzed in this work
step.

Why: This will later help to reduce the set of parameters to the most relevant ones and
remove redundancies. The input parameters determined in this step will serve as the set
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from which the actual parameters, which will later be used in the implementation, will
be chosen.

The reason for defining all possible parameters without regard to whether or not they
will be available is to gain a complete as possible overview of the context space, which
will later allow a reduction of the list of input parameters, removing redundancies and
identifying the most relevant parameters. At this point in the methodology it will not yet
be considered where the parameters come from or if they can be obtained at all. When
reducing the parameter set at a later point these considerations will be taken into account.

3. Categorize parameters
In this work step the previously determined parameters are categorized with respect to
certain characteristics. Note that the categories into which the parameters are classified
are application dependent and must be defined to reflect the nature of the application
in question. While this work step is listed here as a separate step, it is also possible to
categorize the parameters as they are being determined in the previous step.

How: Parameters are categorized by going through the list of defined parameters and
considering their respective characteristics. Such characteristics could be whether the
parameters are basic parameters that can be measured, whether they can be calculated
arithmetically from other parameters or determined cognitively or whether they are pre-
set parameters.

Why: Dividing parameters into separate categories is a first step in determining the rel-
evance of parameters. This categorization can help in the next step when the parameter
list is being reduced and redundancies are removed. Furthermore, the categorization of
parameters will influence the choice of an approach to solving the problem and also the
interface design and implementation in later stages.

4. Parameter reduction
During the analysis of input parameters in the previous steps the focus was on modeling
the context space of parameters as completely as possible without regard to whether or
not these parameters would be used in an actual implementation. Having modeled the
context space and categorized the parameters in the previous steps, the list of parameters
can now be reduced to those most relevant according to the requirements and objectives.

How: During the reduction of parameters one will have to consider the actual availability
of parameters. This means, that only parameters which can actually be supplied to the
system should remain after this step. Furthermore, parameters can be reduced by consid-
ering the interdependencies in the parameter context space and choosing the parameters
on which the most other parameters depend.

Why: Parameter reduction is necessary to reduce the complexity of the context space and
also to remove unnecessary redundancies. Moreover, the step of parameter reduction
will distill the most relevant parameters of those that can be obtained from the parameter
context space.

5. Concept and design
After all parameters have been defined, a suitable strategy to infer the output parameters
from the input parameters can be determined in this work step. Protocols and messages
as well as interfaces are to be defined at this stage. Furthermore, the architecture of the
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implementation is determined at this point.

How: The solution approach can be chosen by surveying related work that has been done
and picking an approach with similar application constraints. The system is designed
by considering the application requirements and possible constraints such as preexisting
implementations into which the system might have to be integrated.

Why: The designs specified in this stage will serve as a guide in the implementation stage.

6. Implementation
In this work step the decided upon approach is implemented. When implementing the
designs it is necessary to also document the implementation. As part of the implementa-
tion, a validation must be performed.

How: The solution is implemented by following the steps laid out in the previous work
step. It should be noted that the implementation step can affect decisions made in previ-
ous steps, as resource and performance constraints have to be taken into consideration in
this step.

Why: In a work that is not purely theoretical, an implementation, even if only a proof of
concept implementation, serves as a proof of viability of the previously designed solution
to a problem.





4 Parameters

This chapter presents an analysis of the context parameters in the dynamic spectrum access
reasoning scenario. First the desired output parameters are defined, after which a detailed
analysis of the context space is presented. Following, the parameters used in the implemented
context reasoner are distilled from the list of parameters in the context space.

4.1 Output Parameters
The problem addressed in this work is finding and allocating spectrum that allows low-latency,
low-interference and robust communication. To this end a solution is implemented that sup-
plies a decision engine with facts about the spectrum, enabling the decision engine to make
allocation decisions according to the requirements.

The approach taken in this work is to implement a reasoning engine that works on context
information about the spectrum and provides facts about said spectrum as output. Suitable
output parameters reflecting the stated requirements are defined in this section. These param-
eters are defined by asking which parameters a decision engine would require in order to make
a decision on which spectrum block to allocate or whether or not to allocate a spectrum block
at all.

This section first defines how the terms latency and robustness are to be understood and
interpreted within the context of this work and then presents the output parameters provided
by the context reasoner to indicate the quality of spectral bands.

Defining latency and robustness
The terms latency and robustness have different meanings depending on the application sce-
nario, which is why as a first step the application scenario and requirements must be analyzed
before defining those terms.

The size of packets in M2M communications is typically much smaller than that of packets
in human generated traffic. Packet sizes are as small as 30 bytes. Typical communication sce-
narios include those where short control messages and sensor data are repeatedly sent across a
link [46] [47]. In some mission critical applications, where late delivery of packets could have
catastrophic consequences, systems must guarantee successful transmission of packets with a
loss rate of less than 1 per billion. One example of such an application is in industrial automa-
tion, where only one in a billion packets may be lost or exceed a given latency delay budget
[48], which in some applications can be as low as 1 ms [3].

In such scenarios, where small individual packets are sent periodically rather than large mes-
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sages, it is not the effect of the data rate on latency that matters most, but rather the contribution
of interference and resulting retransmissions and packet loss.

For the purpose of this work, latency is defined as the delay between the first bit of a packet
being transmitted at the sender and that packet being available in the IP layer of the receiver.
This definition of latency includes the requirement of successfully having to decode the packet,
since only correctly received packets are forwarded to the IP layer.

A robust communication is one where packet loss occurs at a lower rate than a prescribed
threshold, such as the above mentioned 1 per billion for instance. The wireless channel char-
acteristic that is directly related to robustness is interference. With all other parameters being
equal, the higher the interference on a channel, the less robust of a wireless communication will
be possible on that channel.

As can be gathered from the above descriptions, latency and robustness are closely related,
which is why there will be one single parameter to indicate the quality of a spectral band and
its ability to support communication within the required limits of latency and robustness.

Following are the parameters that will be the outputs of the context reasoner:

• Quality value: The quality value estimate refers to the ability of the link to support a
communication whit a desired level of latency and robustness as indicated by the packet
error rate.

• Confidence value: Since the quality estimate will be derived from a reasoning process
there will also be a certainty value indicating the context reasoner’s confidence in the
quality estimate made.

• Prediction value: As one of the requirements is to enable the decision engine to infer
which channel will provide the best performance for some time in the future, one output
parameter should be a prediction value.

Spectrum blocks in the spectrum portfolio database can be tagged with the outputs of the rea-
soner indicating the quality of each spectrum block. Upon receiving a spectrum request, the
decision engine can choose a spectrum block to deploy, by comparing the quality estimates of
available spectrum blocks to the client’s requirements.

4.2 Input Parameters
In this section the input parameters needed to infer the output parameters determined in the
previous section are being identified and categorized. At this point, no regard is given to
whether or not these parameters will actually be obtainable later, as this will be considered
when performing the parameter reduction in the next work step.

It should be noted that no attempt is being made at capturing every possible parameter and
the relationships between them, as that would result in an unnecessarily detailed analysis of
said parameters. The parameter analysis is only being performed to a level of detail that will
provide enough of an overview of the parameters and how they affect and depend on each
other so that in a later stage the most relevant parameters can be identified from this set of
parameters.

As mentioned in the methodology chapter, work step 2 and 3, which are " Determine input
parameters " and " Categorize parameters " respectively, can be performed simultaneously, as
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is the case in this work.

Furthermore, the categories into which the parameters belong are indicated by the letters M,
A, C, I in square brackets. These letters stand for the four parameter categories, which are:

• Measurable: These are parameters that can be measured directly and reported to the rea-
soning engine. This shall include parameters whose values do not have to be calculated
or inferred from other parameters.

• Adjustable: Like measurable parameters, adjustable parameters do not have to be cal-
culated or inferred from other parameters. Adjustable parameters are those that can be
tuned or set to certain values and settings at will or in response to other parameters. Op-
timal parameter settings for these parameters might be inferable heuristically by process
of reasoning.

• Computable: Refers to those parameters which are neither directly measured nor set but
mathematically and algorithmically calculated from a set of other parameters.

• Inferable: Parameters for which there might not be a formal mathematical closed form
solution with which to calculate them. Those parameters might be inferable by process
of reasoning.

Following is the list of analyzed parameters, each with a short description, giving some insight
as to why the parameter is being considered. Every listed parameter also includes a list of
parameters on which it depends and a list of parameters which it affects. The meaning of these
two words in the context of this parameter list is explained as follows:

• Depends on: Refers to the parameters that, when changed, will have a direct effect on
the value of the parameter in question. Furthermore, it refers to the list of parameters
that could be used to calculate or infer the parameter in question if that parameter were
not given. It also includes the parameters that can affect the setting of the parameter in
question if it is an adjustable parameter.

• Affects: Refers to the parameters whose values change if the value of the parameter in
question is changed. In case of adjustable parameters, it also refers to those whose set-
tings are chosen in response to the value of the parameter in question.

Bandwidth
Bandwidth is a very basic parameter in this application scenario. When the radios in the com-
munication environment sense the spectrum, measurements will be performed over certain
portions of the entire spectrum. Naturally, it is necessary to state the frequencies over which
these measurements were performed, so that the reasoning engine can correctly characterize
and state facts about the frequency bands in question. The effect of bandwidth on the quality of
a communication is twofold. According to the Shannon-Hartley theorem [49], the bandwidth
of a channel is proportional to the channel’s capacity. However, when increasing a channel’s
bandwidth, that channel also captures more noise, decreasing the SNIR (Signal to Noise plus
Interference Ratio) (Signal to noise plus interference ratio) and thus the quality of the chan-
nel. For the input parameter bandwidth, a distinction has to be made between utilized and
available bandwidth.

Utilized: [M], [A]: The amount of bandwidth actually used by communicating systems can be
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measured and fed into the reasoner as an input parameter. Alternatively, since the total amount
of utilized bandwidth is primarily determined by the communications system it is also possible
to view it as an adjustable parameter.

Available: [M], [C]: Much like the amount of utilized bandwidth, the amount of available
bandwidth can be measured and fed into the reasoner as an input parameter. Additionally,
from knowing how much bandwidth is being utilized, the amount of available bandwidth
can be calculated. The amount of available spectrum can also be inferred from the spectrum
portfolio database.

Affects:

• SNIR. Increasing the bandwidth that the receiver senses at a given NI (Noise plus In-
terference) power spectral density will also lead to an increase in overall NI power and
therefore a decrease in SNIR. However, if allowed to transmit with a constant power
spectral density when increasing the bandwidth, the SNIR would remain the same.

• Channel capacity and thus data rate. Through the Shannon-Hartley theorem, the band-
width is directly related to the channel capacity. The higher the channel’s bandwidth, the
higher the channel capacity. However, with increasing bandwidth, the SNIR decreases
which leads to a reduced channel capacity and thus reduced data rate and communica-
tion latency.

SNIR (Signal to noise plus interference ratio)
In wireless communications, SNIR is one of the most fundamental parameters that character-
ize a communication channel. It can be used as the basis for deriving many other character-
istics of the channel. If a radio or a spectrum analyzer is capable of detecting and identifying
individual interference patterns and interferers rather than just overall noise and power lev-
els on frequency bands, this information should be shared with the reasoner, as this knowl-
edge will enable the reasoner to infer more accurate facts about the spectrum. Due to the
difficulty of detecting interference patterns and the limitations of the sensors, measurements
will probably only be able to distinguish between interfering communication system and non-
communication system interferers. A distinction is made between in-band and out-of-band
SNIR.

In-band [M]: The in-band SNIR is a basic parameter that can be measured directly by the com-
munications systems and fed into the reasoner directly as input.

Out-of-band [C], [I]: Out-of-band SNIR cannot be measured directly, since an SNIR can only
be measured if there is an ongoing communication and there is a useful signal. Since out-of-
band SNIR cannot be directly measured by the communications system it must be calculated
or inferred from the obtained in-band measurements.

Depends on:

• Spectrum occupancy. The more nodes are concurrently communicating on a given or even
adjacent channels, the lower the SNIR will be at the receiver. Spectrum occupancy infor-
mation can be extracted from the spectrum portfolio database.

• Bandwidth. Increasing the bandwidth at the receiver without increasing the senders trans-
mit power decreases the SNIR. If the transmit power is increased accordingly in order to
maintain a constant transmit power spectral density when increasing the bandwidth, the
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SNIR will remain constant.

• NI power levels. Higher NI power levels on a channel lead to a lower SNIR when the
transmit power is kept constant.

Affects:

• BER (Bit Error Ratio). With all else equal, and particularly without an error correction
scheme that could mitigate the effects of a noisy communications channel, a lower SNIR
leads to higher BER.

• Channel capacity. According to the Shannon-Hartley theorem, the channel capacity of a
communication channel is proportional to the SNIR of the channel.

• Data rate. On a channel with a lower SNIR, the net useful data rate decreases due to a
necessary increase of redundancy for FEC (Forward error correction).

• MCS (Modulation and Coding Ccheme). The choice of an MCS (Modulation and coding
scheme) depends on the experienced SNIR levels on the channel. Higher SNIR levels will
require slower and more robust modulation schemes to be chosen.

NI power levels
The reason NI power levels and SNIR are listed as two separate parameters is because NI
power levels can be measured by spectrum sensors without being part of a communication.
Noise and interference on a channel both directly affect achievable communication quality on
that channel.

[M]: Like SNIR, NI power levels are a basic parameter of the communications channel. They
can be obtained by simply measuring a channel’s power levels. However, since there will be
communicative interferers present, the channel’s measured power levels will not be pure noise
but rather noise plus interference.

Noise/Interference [I]: Separating the noise and the interference power levels from each other
from the obtained NI power level measurements could possibly be done cognitively by rec-
ognizing and filtering known interferer patterns. This includes both regular radio channel
noise as well as noise from non-communicative interferers, such as starting machines. How-
ever, separating the two might prove to be quite difficult as it requires quite advanced filtering
algorithms.

Affects:

• SNIR. In areas where no SNIR measurements could be obtained, the SNIR could be esti-
mated from the knowledge of the NI power spectral density in the environment.

• BER, channel capacity, data rate, MCS. Same as with SNIR

BER
BER of a communications channel is often used as an indicator of channel quality or a factor
that is considered when estimating the quality of a channel [50].

[M]: Based on the communicating radios’ capabilities, spectrum measurement reports might
include experienced BERs

[C]: BERs can be computed from SNIR, NI power levels, MCS and TX (Transmitter or Transmit)
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power. BER is a parameter that indicates the quality of a communication channel and as such
can be used make estimates about communication latency, robustness and quality in general.
BER is inversely proportional to communication latency, as a higher BER leads to more packet
retransmissions thus increasing latency.

Depends on:

• SNIR. The lower the experienced SNIR on a channel the higher the BER will be.

• NI power levels. Same as with SNIR.

• MCS. Here, only the BER after forward error correction is considered. The faster the
modulation scheme, the higher BER will be for a given SNIR.

• TX power. The BER is inversely proportional to the TX power of the sender, since the TX
power is proportional to the received SNIR.

Affects:

• Data rate. The higher the BER, the more retransmissions may occur which reduces the
overall useful data rate. The relationship between BER and data rate is affected by the
applied error correction on higher layers.

• Choice of MCS. Experienced BER levels on a channel can affect the decision on which
MCS to use.

• Choice of packet size. For a given BER, smaller packets have a lower probability of retrans-
mission than larger packets. However, the relative packet overhead for smaller packets is
higher than that for larger packets. This means that choosing the packet size for a given
BER in order to minimize retransmissions is an optimization problem.

Channel capacity
The channel capacity of a communication channel is the theoretical upper bound on the rate
at which any information can be transmitted over a noisy channel. It is proportional to the
bandwidth of the channel and to the logarithm of the experienced signal to noise ratio.

[C]: Channel capacity can be calculated from bandwidth and SNIR. In theory, the higher the
capacity of a communication channel, the lower the achievable communication latency over
that channel.

Depends on:

• Bandwidth. The higher the available bandwidth, the higher the capacity of the channel.
However, increasing the bandwidth of the channel, while keeping the transmit power
constant, also increases the amount of noise experienced, which limits the maximum at-
tainable channel capacity by bandwidth increase.

• SNIR. The higher the SNIR, the higher the capacity of the channel.

Affects:

• Data rate. As the capacity of the channel bounds the achievable symbol rate and the infor-
mation capacity of a symbol on said channel with a given bandwidth and a given SNIR,
the data rate achievable on a channel is also bounded by the channel capacity.
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Spectrum occupancy
Current spectrum occupancy information can be extracted from the spectrum portfolio database.
The amount of nodes currently communicating has a direct effect on the SNIR levels. Fur-
thermore, communication on one channel, will also affect neighboring channels. The spec-
trum portfolio database provides information about currently allocated spectrum. By knowing
about the geographic and spectral distribution of communicative interferers, the reasoning en-
gine can more accurately characterize the spectral environment. For instance, knowing that
a certain number of nodes are communicating at a given time in a given spectral band, in a
given geographic region, will enable the reasoning engine to make estimates about the spectral
environment based on the given facts.

[M]: Regarded as a measurable parameter, since it can be taken as input directly, without having
to calculate or infer it from any other input parameters.

Depends on:

• Current spectrum occupancy is largely an independent parameter, however, it might be
possible to predict future spectrum utilization access requests from historic spectrum uti-
lization patterns.

Affects:

• SNIR. Current spectrum utilization has a direct effect on the observed SNIR. The more
communication there is, the lower the SNIR, which in turn leads to a higher latency due
to an increase of packet retransmissions.

Data Rate (Throughput)
Refers to the net data rate of useful data, excluding overhead for FEC and other overhead.
Given a message of a certain size, increasing the data rate will decrease the latency of end to
end communication. However, increasing the data rate usually means either communicating
over a larger bandwidth or increasing the modulation and coding rate, both of which can result
in a higher BER and thus to more retransmissions.

[C]: Can be calculated from MCS, SNIR, NI power levels, BER, channel capacity, bandwidth
and TX power.

[M]: Actually achieved data rates might be measured and reported by communicating radios
in their spectrum utilization reports.

Depends on:

• MCS. Theoretically, a faster MCS rate will result in a higher data rate, with the caveat,
that this will also increase the BER and retransmissions and thus reduce the total net data
rate.

• SNIR. According to the Shannon-Hartley theorem, the achievable channel capacity at a
given bandwidth is proportional to the SNIR on that channel.

• NI power level. Same as SNIR

• Channel capacity. This is the upper bound for the theoretically achievable data rate on a
channel.

• Bandwidth. According to the Shannon-Hartley theorem, the achievable channel capacity
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at a given constant SNIR is directly proportional to the frequency bandwidth available.

• TX Power: A higher transmit power will lead to a higher SNIR at the receiver, which will
lead to lower BER and fewer retransmissions and thus a higher data rate.

Packet size
The choice of packet size can affect the quality of a communication, since packets have to be
retransmitted in their entirety if a packet error occurs. Furthermore, reporting packet size in
sensing reports, allows the reasoner to more accurately qualify other reported parameters such
as experienced error ratios or data rates.

[A]: Packet size can be adjusted depending on the characteristics of the channel in order to
minimize retransmissions. For a given data rate and BER, the communication latency is pro-
portional to the packet size. The longer the packet, the more time is required to process the
packet.

Depends on:

• BER. Packet size could be adjusted in response to experienced BER.

Affects:

• Data rate. With all else equal, increasing packet size should increase the data rate over
the channel. This is because the ratio of useful data to overhead grows with increasing
packet size. However, with increasing packet size, packet errors and thus retransmissions
become much more likely, therefore decreasing the data rate. This means, that for a given
channel with a given BER, maximizing the data rate with respect to packet size is an
optimization problem.

• Processing and serialization delay. Larger packets require more processing time. Longer
buffering and queuing times will also be incurred by larger packets.

RAT (Radio Access Technology)
The choice of RAT affects parameters such as MCS and data rate. RAT can be chosen based on
basic channel characteristics such as SNIR and noise power, in order to optimize the quality of
a communication.

[A]: Can be chosen based on characteristics of the communication channel to optimize for the
desired quality metrics.

Depends on:

• SNIR, NI power level and BER. RAT can be chosen in response to channel characteristics
such as SNIR and NI power levels and experienced BERs, in order to enable robust and
low latency communication.

Affects:

• MCS. The chosen RAT will determine which MCS are available.

• TX Power. Some RATs, such as those in the ISM bands, place limitations on permissible
transmit powers [51][52].
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MCS
MCS describes the type of modulation used in the communication system and also the FEC
scheme along with the code rate. With higher modulation rates, higher data rates are achiev-
able, however with higher modulation rates experienced BER increases as well, leading to more
retransmissions and thus to a lower effective data rate.

[A]: MCS can be chosen based on channel characteristics and is thus an adjustable parameter.

Depends on:

• SNIR, NI power levels and BER. Modulation and coding schemes are chosen based on ex-
perienced SNIRs, NI power levels and BERs on the channel.

Affects:

• Data rate. Higher modulation rates enable higher data rates. Proportionality between
modulation rate and data rate is only given when the channel can be assumed to have an
arbitrarily high SNIR [49], since a faster modulation requires a higher SNIR in order limit
retransmissions due to errors that occur as a result of the faster modulation.

• BER. At a given SNIR the faster the MCS the higher the BER and thus the number of re-
transmissions will be.

TX Power
Knowing which transmit power was used within a communications system that reports a cer-
tain experienced SNIR or BER values is necessary in order to qualify the reported measure-
ments and to make them comparable to those of other communication systems, which might
operate with different transmit powers.

[A]: TX power is an adjustable radio setting, that can be chosen in response to the quality of the
channel. Increasing the TX power at the sender will increase the SNIR at the receiver and thus
lead to fewer retransmissions due to errors.

Depends on:

• RAT. As mentioned above under RAT, some RATs prescribe permissible TX power levels
limited by regulatory standards.

• SNIR, NI power levels and BER. TX power can be adapted as a response to experienced
SNIR and BER levels.

Affects:

• SNIR and BER. Increasing TX power leads to a higher SNIR and thus a lower BER.

Geographic position
The communication environment will vary with geographic position. Different geographic
positions will yield different channel SNIR and BER characteristics. If the application scenario
includes mobile nodes the position of those nodes will vary with time and should be reported
with spectrum sensing reports. Even in case of stationary nodes the position should either be
reported with sensing reports or be known to the system beforehand.

[M]: The position at which a measurement was taken can be itself be measured and fed into the
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input of the reasoner directly.

[A]: Position can also be regarded as an adjustable parameter, as the position at which to com-
municate can be chosen in response to channel characteristics in different locations.

Depends on:

• Measured SNIR, NI power and BERs. As an adjustable parameter, position can be chosen in
response to experienced SNIR, channel noise and BER if the application scenario allows
it, as might be the case in a mobile environment. Even in a non-mobile environment, an-
tenna might be adjustable.

Affects:

• Measured SNIR, NI power and BERs. Basic channel characteristics such as these are location-
dependent. This is especially the case in indoor environments. Depending on where
measurements are taken, sensors will report different values for these parameters when
sensing the same frequency bands. By affecting these basic channel parameters, the pa-
rameter of position also indirectly affects those parameters that are affected by these basic
parameters.

• (Available) Bandwidth: Much like with the basic channel characteristics above, available
spectral bands might be location-dependent.

Packet delay variation
Packet delay variation is the difference in delay between subsequent packets sometimes also
referred to as jitter [53][54]. It is an indicator of channel or link stability and reliability.

[M]: Packet delay variation can be measured by the communicating radios.

Depends on:

• SNIR. A variation in packet delay occurs when there is also a variation in the state of the
channel. As such, a varying SNIR can have an impact on packet delay variation between
communicating radios.

Propagation delay
The propagation delay is the lower bound for signal transmission, limited by the speed of
light and the distance between nodes. Propagation delay is negligible for indoor scenarios. It
is not negligible, however, when communication occurs over hundreds of kilometers. When
choosing one of two links, the propagation delay might be a factor in determining which of the
links to choose based on the quality of service requirements.

[M]: Can theoretically be measured, provided that the radios are synchronized with each other,
as measuring propagation delay requires high precision timing.

[C]: If the distance between nodes is known, the propagation delay can be calculated.

Depends on:

• Depends only on the distance between communicating nodes, the speed of the signal and
the characteristics of the propagation medium.
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Processing and serialization delay
On the nodes, packets have to be processed and serialized and deserialized. Buffering and
queuing of packets also adds some delay.

[M]: Can be measured by repeatedly taking measurements in the processing systems and statis-
tically calculating the processing and serialization delay. In most cases this delay is negligible,
however.

Depends on:

• Packet size. Larger packets require longer processing and serialization.

Affects:

• Packet delay variation. Since the processing and serialization delay is not a fixed value but
a random variable, the packet delay variation is affected by the processing and serializa-
tion delay.

Following is a tabular overview of the parameter dependency analysis done in this section:
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Table 4.1: Input parameters
Parameter/factor depends on affects
Bandwidth SNIR
Utilized: [M], [A] Channel capacity
Available: [M],[C] Data rate
SNIR Spectrum occupancy BER
in-band: [M] Bandwidth MCS
out-of-band: [C],[I] NI power Channel capacity

Data rate
NI power Spectrum occupancy SNIR
in-band: [M] BER
out-of-band: [C],[I] Channel capacity

MCS
BER [M],[C] SNIR Data rate

NI power MCS
MCS Packet size
TX power

Channel capacity [C] Bandwidth Data rate
SNIR

Spectrum occupancy [M] SNIR

Data rate (Throughput) [C], [M] MCS
Channel capacity
Bandwidth
SNIR and NI power
TX power and BER

Packet size [A] BER Data rate
Processing and serialization delay

RAT [A] SNIR MCS
NI Power TX power
BER

MCS [A] SNIR Data rate
NI power BER
BER

TX power [A] RAT SNIR
SNIR BER
BER

Geographic Position [M], [A] SNIR SNIR and NI power
NI power BER
BER RAT

Spectrum occupancy and available
bandwidth

Packet delay (variation) [M] SNIR
Propagation delay [M] (Distance between nodes)

(Propagation medium characteristics)
Processing and serialization [M] Packet size Packet delay variation

(NIC/Hardware specs)
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4.3 Parameter Reduction
In the previous section a list of context parameters was defined that could serve as input pa-
rameters for the context reasoner in the dynamic spectrum access reasoning scenario of this
work. In this section, the list of parameters is reduced to the parameters that will be used in
the proof of concept implementation of the context reasoner.

The analysis of context parameters and their interdependencies showed that the context
space is highly complex, with parameters depending on each other in circular and non-linear
ways. A parameter reduction can be performed by considering the parameters which affect
the most other parameters. Another factor to be considered when reducing the parameters is
whether a parameter will actually be obtainable in the application scenario. Following is the
reduced set of the most important parameters for the context reasoner:

SNIR

The parameter analysis in the previous chapter shows that SNIR is a fundamental parameter
on which many other parameters depend. Many important channel characteristics and quality
metrics, such as BER or channel capacity, can be inferred from SNIR. Therefore, SNIR is used
as a context parameter.

NI power

Similar to SNIR, noise and interference measurements are very basic wireless channel param-
eters affecting many other parameters and giving information about the quality and the state
of the channel. While SNIR includes noise and interference power, it makes sense to consider
these parameters separately, as that allows the context reasoner to make more informed in-
ferences about the quality of channels, for instance, when comparing two spectral bands with
similar SNIR but different noise plus interference power values.

Bandwidth

Since the context reasoner outputs facts about spectral bands, it needs to know which bands
received measurements are associated with. Here, bandwidth does not only refer to the width
of the band but also to its location in the radio spectrum, which can be indicated by center fre-
quency. This information can either be used in the quality assessment of the channel or it can
simply be used to associate measurements and reasoning outputs with certain spectral bands.

These three parameters are the only channel parameters that are used by the context reasoner to
make channel quality assessments in this work. While many more parameters could potentially
be used, the list of used parameters is intentionally kept small, as one requirement was to
implement a minimal context reasoning engine. Additional context parameters are not needed,
as the presented parameters are sufficient to make statements about the quality of a spectral
band.





5 Concept and Design

In this chapter the design of the context reasoner is presented and discussed. As a first step,
the requirements for the implementation are set in Section 5.1.

In Section 5.2 the high level data flow architecture of the spectrum manager environment in
which the context reasoner component will be integrated is introduced.

The internal architecture and the individual modules comprising the context reasoner com-
ponent are presented in the following section. Section 5.4 gives a brief overview of the protocol
and interface specifications for communication between the entities in the spectrum manager
environment.

The chapter concludes with Section 5.5, in which various preliminary considerations are
discussed.

5.1 Requirements
In this section the requirements for an implemented solution are outlined. These requirements
have been chosen with respect to the application scenario and the objectives stated in Sec-
tion 1.2

• Real-time capabilities:

The implemented solution should operate and process the context information in real-
time or near real-time. Due to the fast-changing nature of the radio spectrum, the imple-
mented reasoner should exhibit real-time capabilities in order to be useful in a real-world
deployment scenario.

Since the specific time limits always depend on the application and must be defined to
reflect its requirements, no concrete time limit requirements are set for the implemented
solution. However, the solution is to be designed and implemented with the goal of min-
imizing processing time in mind. To this end the following points should be considered
during design and implementation:

◦ I/O operations should be limited, particularly disk access, as it is much slower than
main memory access.

◦ As a corollary to the previous point, data should preferably be kept and processed
in main memory.

◦ High resolution timers should be used for finer grained control for time sensitive
operations and periodic timers.

37
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◦ Asynchronous operations should be limited as their timing is unpredictable.

◦ Interrupt-based operations should be limited as they incur processor context switches.

• Numerical context:

The reasoner must be able to operate on numerical context. This requirement arises from
the fact that the context reasoner will be integrated in an already existing environment,
in which data, in particular measurements, are passed around in numerical form.

• Robustness against noise:

The implemented solution must be able to handle noisy input data. As any measurement
of real physical quantities is subject to measurement errors due to noise and other fac-
tors, the implemented reasoner must be able to perform robustly in the face of noisy and
imprecise inputs.

• C++ implementation:

The system should be implemented in C++. This requirement arises from the fact that
preexisting spectrum manager implementations are done in C++. A C++ implementa-
tion of the solution will simplify integration of the context reasoner with the spectrum
manager system.

Another advantage of implementing the solution in C++ is that it will help meeting the
real-time requirements, as C++ is a non memory managed language and thus avoids the
timing penalties incurred by automatic garbage collection.

• Concurrency:

The implemented solution must operate concurrently so that inputs from different sources
can be processed simultaneously.

• Modularity and flexibility:

The implementation must be modular so that components within it can be exchanged and
modified without affecting other components. Flexibility is required so that the solution
can easily be adapted to changing application requirements.

• Documentation:

As already mentioned in objectives the implemented solution should be well documented,
so that the system and the code can be operated and modified with minimal effort.

5.2 High Level Data Flow Architecture
This section will describe the high level data flow architecture, of the dynamic spectrum man-
agement infrastructure. The interfaces and messages are described in more detail in Section 5.4.
This section only aims to introduce the spectrum management environment and give a high
level overview data flow in that environment.

There are 3 entities in the dynamic spectrum management infrastructure, namely spectrum
users, spectrum providers and measurement points. Spectrum users are those that request spec-
trum access rights from spectrum providers, which are responsible for granting access and
withdrawing spectrum usage rights from users. Measurement points observe the spectral en-
vironment and report those measurements to spectrum providers or users depending on the
use case.
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These three roles can be realized in different combinations within devices or systems. For
instance, a wireless network access controller could act as a spectrum provider for wireless
end systems, while acting as a spectrum user requesting several spectrum portfolios from a
spectrum manager. Interfaces that enable communication between these entities are described
in [55]

Figure 5.1 shows the three entities of the dynamic spectrum management infrastructure in
a typical scenario. The spectrum manager acts as both a spectrum provider and a context
aggregator. It communicates with measurement points, realized on remote sensor devices via
the If_DeviceSensor interface. Context aggregators receive measurement reports from and
pass measurement control information to measurement points through the If_DeviceSensor
interface.

The cell controller combines three roles, acting as spectrum user, spectrum provider and
context aggregator at the same time. As a spectrum user, it sends spectrum access requests
to and receives responses from the spectrum manager via the If_SpectrumManager interface.
As a spectrum provider it can receive spectrum access requests from wireless end-systems and
grant or deny those requests. As a context aggregator it receives spectrum utilization reports
from wireless end-systems and sensor devices acting as measurement points.

Figure 5.1: Configuration of the entities in the high level data flow architecture of the spectrum management
infrastructure [55]

The point of this section is to illustrate how data can be passed between different entities
in the spectrum management infrastructure. Most commonly the data is generated in an end-
system in the form of measurements and then reported to a context aggregator at a higher
layer.

As is suggested by Figure 5.1, context data processing can be done in a hierarchical manner.
In such a hierarchy it is possible for one context aggregator to acquire and preprocess data
on a relatively low layer before passing on that data to another context aggregator. In such a
scenario, the first context aggregator would act as a reporting instance for the second higher
layer context aggregator. One possible use case for such a hierarchical scenario would be to
filter out redundancies and perform dimensionality reduction in the acquired data in the lower
layer context aggregators.
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While the context reasoner implemented in this work is designed to be used as a component
within a spectrum manager system, it could just as well be utilized within a lower layer context
aggregator, such as the cell controller in Figure 5.1. Such a hierarchical model would allow the
context reasoner within the spectrum manager in the uppermost layer to work with summa-
rized non-real-time data from several lower layer context aggregators. This hierarchy would
enable the spectrum manager to observe larger geographical areas or various cells without
having to deal with the high amount of data generated by the measurement points in different
locations and cells.

5.3 Context Reasoner Architecture
This section presents the design decision made for the context reasoner architecture. The con-
stituent modules are presented and described. In particular, the modular threading architecture
devised to enable real time processing is outlined in this section. When designing the context
reasoner architecture, emphasis was put on modularity and flexibility, so that the implementa-
tion of this architecture could be reused and modified with minimal effort.

Thread Architecture
The context reasoner implemented in this work is a component within a spectrum manager,
inferring facts about the spectral environment, facilitating the decisions of the spectrum man-
ager. To infer such facts about the spectral environment the reasoner requires context infor-
mation about said spectral environment delivered by reporting instances. To handle incoming
data from various reporting instances simultaneously and in real-time, a thread architecture is
required.

Figure 5.2 depicts the thread architecture and all the modules that compose the context rea-
soner component. The architecture follows a modular design, where each module is respon-
sible for a specific task. All modules, indicated by an M, run in independent threads and are
connected by shared memory structures, allowing inter-thread communication. Following are
descriptions of the individual modules in the thread architecture.

Figure 5.2: Context Reasoner modules and thread architecture
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Receiver Module
The receiver module acts as the entry point of the context reasoning component. It is respon-
sible for communicating with the entities providing the reasoning system with input values.
Within the context of this work the reporting entities are assumed to be RF sensors. A con-
nection between a reporting instance and the receiver module is established via some com-
munications protocol, such as TCP (Transmission Control Protocol) or UDP (User Datagram
Protocol).

There is one instance of the receiver module thread for each established connection. This
design avoids the potential of congestion that could occur if there was only one instance of the
receiver module. When integrated in the FleMMingo spectrum manager, the receiver module
could implement the SAP methods for setting up a remote network connection with other en-
tities as described in the following section. The receiver module places the received data on a
queue to which it shares access with the following module in the thread architecture.

Processing Module
The processing module is responsible for any statistical preprocessing of the inputs before pass-
ing those values to the input of the reasoning stage. Simple calculations of means and variances
of the sampled data as well as more complex calculations should be performed in this stage.
The processing module receives raw measurement data from the receiver module, summarizes,
filters and processes that data in an appropriate manner and then places it in the FSIV (Fuzzy
Shared Input Vector) shared memory structure, where the dispatcher module can retrieve the
data and provide it as input to the reasoning stage.

FSIV is a structure which has been defined to simplify communication between the process-
ing and the dispatcher module. It holds a vector of FRIN (Fuzzy Reasoner Input) structures,
which are data types that contain the input information for the fuzzy reasoners. Additionally,
the FSIV type defines thread safe methods to allow simultaneous access of several processing
modules and exclusive access of the dispatcher module to the underlying FRIN objects.

Just as is the case with the receiver module, there is one instance of a processing module for
each connection to a reporting instance. Once again, this choice was made to reduce the risk of
congestion and to allow fast processing of incoming data.

Dispatcher Module
The dispatcher module serves a twofold purpose. It acts as a synchronization point, temporally
bringing together measurements from all the different sensors. Additionally, it delivers the
outputs of all the processing modules to the input of the reasoning stage, which contains the
fuzzy reasoning engines. As the sensors do not report their measurements synchronously, the
measurements have to be synchronized before being delivered to the reasoning stage.

Furthermore, the dispatcher module contains an internal timer, allowing the dispatcher to
periodically initiate reasoning iterations. Upon expiration of the timer period, the dispatcher
retrieves the data from all the processing modules from the memory structure it shares with
them and copies that data to the shared memory structure acting as the input of the reasoning
stage. While the reporting instances might report their measurements with different frequen-
cies, the reasoning stage module will receive a set of inputs from all reporting instances from
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the dispatcher module at fixed periods. The decision to include a timer inside the dispatcher
module rather than in a separate timer module was made to avoid the overhead that would be
incurred if a separate timer module had to periodically notify the dispatcher across threads.

The dispatcher module disseminates events to the following reasoning stages, notifying
them of a new reasoning iteration. The reasoning stages, or more precisely the fuzzy reasoners
in those stages, send back confirmations to the dispatcher once they have finished a reasoning
iteration. No new reasoning iteration can be started until the dispatcher has received con-
firmations from all reasoners. The same event dissemination and confirmation interaction is
implemented between the reasoning stages and the collector and between the collector and the
decision engine proxies.

Reasoning Stage Module
The reasoning stage module is a container enclosing the fuzzy reasoners. Different fuzzy rea-
soners with different inputs and rules can operate in parallel within the reasoning stage. This
hybrid approach can be chosen when the number of inputs would be too large for one fuzzy
reasoner or when it is desirable to separate logically unrelated rules.

There can either be one reasoning stage instance for all reporting instances or one reasoning
stage instance for each reporting instance. In the former case, called the non-threaded mode,
the hybrid fuzzy reasoners within the reasoning stage iteratively process the inputs of each sen-
sor instance. In the latter case, called the threaded mode, depicted in Figure 5.2, one reasoning
stage instance is instantiated per sensor instance, allowing the reasoners to process the inputs
in parallel. The choice in which mode to operate the context reasoner depends on the appli-
cation response time requirements, the number of sensing instances and available computing
resources.

Fuzzy Reasoners
The reasoner modules are the functional centerpieces of the context reasoner component. As
mentioned earlier, several separate hybrid reasoners can be operated in parallel. The fuzzy
reasoners receive their inputs as well as triggering events to start a new reasoning iteration
from the dispatcher module. Once the fuzzy reasoners have finished a reasoning iteration they
write their outputs to a memory structure which they share with the collector module. This
memory structure is a vector of FROUT (Fuzzy Reasoner Output) objects. Similar to the FRIN
type, which holds relevant input information for the fuzzy reasoners, the FROUT type, which
can be seen in Appendix 1, has been defined to encapsulate output information, reflecting the
output that is delivered to the decision engine. The objective of processing spectrum portfolios
is met by simply attaching a portfolio ID to each output message as is indicated in the FROUT
structure.

Collector Module
The collector is situated after the reasoning stage in the thread architecture. Similar to the dis-
patcher, there is only one thread instance of the collector module. It shares memory with the
preceding reasoning stage or more specifically with the fuzzy reasoners within the reasoning
stage. Since the collector module must wait until all reasoners have finished their current rea-



5.4. Interfaces and Messages 43

soning iteration and have written their outputs to the shared memory location, the collector
acts as a synchronizer for the fuzzy reasoners much like the dispatcher does for the processing
modules. After every reasoning iteration the collector module copies the output of the reason-
ers to a memory location it shares with a thread representing a decision engine.

Decision Engine Proxy Module
This module represents the decision engine that receives facts about the spectral environment
from the context reasoner. It is simply responsible for retrieving the output data from the mem-
ory it shares with the collector module and is then free to process that data as it sees fit.

5.4 Interfaces and Messages
This section gives an overview of the relevant interfaces between components in the spectrum
manager environment. These interfaces allow interaction between the various entities in the
spectrum management environment. Moreover, messages defined as part of this work to be
included in the communication protocol used by the spectrum manager and the related entities
are introduced.

Interfaces are realized through service access points (SAP (Service Access Point)). The most
relevant interface for this work is the If_SpectrumManager sub-interfaces in the application ser-
vice access point (ASAP (Application Service Access Point)). The If_DeviceSensor sub-interface
implements the communication between a spectrum sensor and a spectrum provider or user.

In previous Fraunhofer FOKUS projects protocols and interfaces for exchanging messages
between local and remote SAP instances were defined. Of particular interest for this work are
the messages and SAP primitives. Messages are arranged in message scopes, defining mes-
sages for different purposes, which allows SAP instances to handle messages based on their
scope. The two message encodings supported by the SAP implementations described in this
document are a type-length-value (TLV) binary encoding and an XML (Extensible Markup Lan-
guage) encoding.

If_DeviceSensor
The If_DeviceSensor sub-interface implements communication between spectrum sensors and
spectrum users or providers. The sub-interface extends the SCOPE_DSM parameter dictionary
of the SpectrumManager interface. Messages in the spectrum manager interface are logically
organized into message dictionary scopes, grouping together related messages. The relevant
message dictionary scope for this work is the DSM (Dynamic Spectrum Management) scope.
Following are some of the message types defined for this work, along with a short description.

DS_SENSOR_CAP_IE
Describes the sensing capacities of a sensor instance. It is usually passed from a sensor in-
stance to the client application and can contain information about several distinct sensor in-
stances. An RF device may have more than one sensor instance, each identified by a unique
sensor ID. Besides the device ID and the device location, this element contains information
about the type of measurements the sensor can perform and also specifies a frequency mask



44 Chapter 5. Concept and Design

for wide-band measurements and measurements on multiple frequency bands. Furthermore,
the element contains optional context information tied to the sensor instance. Context informa-
tion can be either spectral, temporal, spatial or device context.

DS_MEAS_VAL_IE
This information element is used for encapsulating sensor measurements and passing those
from the sensor instance to the client. The element contains a sensor ID, a sequence number, a
time stamp, information about geographic position and the actual measurement data. Follow-
ing are some of the relevant measurement types that have been defined for this work.

• T_DS_MEAS_SIG_POWER_IE: Instantaneous measurement of the received signal power in
dBm.

• T_DS_MEAS_AVG_POWER_IE: Averaged received signal power over a certain measurement
duration in dBm. Includes information about the variance, the averaging window as well
as the averaging period.

• T_DS_MEAS_SIG_SNIR_IE: Instantaneous measurement of the received SNIR in dB.

• T_DS_MEAS_AVG_SNIR_IE: Averages received SNIR over a certain measurement duration
in dB. Includes information about the variance, the averaging window as well as the aver-
aging period. Also includes information about the average noise power and the variance.

Additionally, there are elements that describe the context of a sensor instance or of one or
more of its measurements. These elements are either passed from the sensor instance to the
client upon instantiation of a sensor instance or upon significant change of context. All mes-
sages were defined in plain C++ headers rather than with common tools such as ASN1 (Ab-
stract Syntax Notation One) [56] or Google Protocol Buffers [57]. This was done so that the
messages could easily be integrated into preexisting headers with message definition from pre-
vious projects.

The If_DeviceSensor is an instance of the ASAP and as such uses ASAP primitives to cre-
ate and remove sensing tasks at the remote devices. The SET primitives are used for setting
one or more values on the remote service. The GET primitives are used for polling sensed data.
Receiving sensed data and status changes in a push mode is made possible through the ERROR,
NOTIFY, REGISTER and DEREGISTER primitives. Figure 5.3 shows a message sequence chart
of the If_DeviceSensor interface for receiving sensor instance reports. The NOTIFY primitive is
used to receive periodic measurements from a sensor instance. As with all other messages,
each measurement must come with a DeviceID and a SensorID so that it can unambiguously
be assigned to a sensor instance. Device and sensor identifications are exchanged during in-
stantiation of a sensor instance.

Output Interface and Messages
So far only the interface relating to communication and message exchange between the context
reasoner and sensor has been described. However, the context reasoner has to communicate its
reasoning outputs to a decision engine or any other component acting as a client of the context
reasoner in the spectrum manager environment. Similar to the definition of the interface and
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Figure 5.3: SAP interface sequence chart for receiving periodic sensor measurements [55]

messages for communication between the context reasoner and sensing instances, there should
be an interface definition between the context reasoner and the decision engine or any other
client interested in the context reasoner’s outputs. Proposals of interface parameters to be used
for communication between a context reasoner instance and a decision engine can be seen in
Appendix 2.

5.5 Preliminary Considerations
This section presents some preliminary considerations that have to made before implementing
the context reasoner. First uncertainty factors affecting the confidence of the reasoning outputs
are discussed, after which the matter of timing is briefly presented. In the following subsec-
tion the concept of reasoning time frames is introduced. The section concludes with a brief
discussion on methods for predicting future values from past observations.

5.5.1 Uncertainty

When the context reasoner infers facts about the spectral environment, it does so with con-
text information which has some uncertainty associated with it. The output of the reasoning
engine must reflect this uncertainty. Therefore, apart from stating facts about the spectral envi-
ronment, the reasoning engine must also include a measure of certainty or confidence in these
facts. Various factors can affect the certainty of a reasoning output. This section provides an
overview of the most relevant factors of uncertainty for the scenario addressed in this work.

Measurement uncertainty
Whenever real physical quantities are measured measurement errors are committed. These
errors can be random or systematic in nature. Because of these errors, every measurement is
subject to uncertainties. These errors are typically caused by noise within the measurement
instruments and can be expressed in terms of random variables. Measurement instruments
come with margin of error statements indicating precision with which measurement can be
performed. Through the method of error propagation, the uncertainties in the inputs of a com-
putation can be forwarded to the outputs.

Variabilty of the measured quantity
The sensing instances periodically sample the spectral environment and report those samples
to the context reasoner system. The sequence of reported measurements can be regarded as
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a realization of a stochastic process or a time series. From such a time series a sample mean
and a sample variance can be calculated. The sample variance is a measure of uncertainty. It
quantifies the variability of the physical quantity over time. The higher the variability of that
quantity during the observation period, the less confidently one can make statements about the
current state of that quantity.

Sampling error
When sampling from a population, all estimates of population parameters such as mean and
variance deviate from the true population parameters. The standard deviation of a sampling
distribution is referred to as the standard error of the statistic. It indicates how much the esti-
mate of the population parameter deviates from the true population parameter [58].

The standard error of the mean can be calculated from a sample estimate of the mean with
s√
n , where s is the standard deviation of the sample and n is the sample size. Increasing the

sample size thus decreases the standard error [21]. This means that the more values one sam-
ples from a distribution the higher the certainty with which one can make inferences about that
distribution. Relating this to the situation of sensors sampling the spectral environment, means
that a higher sampling rate should result in lower uncertainty of the reasoning outputs.

Jitter
Jitter is the variation of some significant quantity with time. In the case of periodic measure-
ments it is the variation of the period. In the case of packet based communication, jitter is the
variance in the delay between the arrival of subsequent packages. The latter form of jitter is
also referred to as packet delay variation [53].

Both forms of jitter are sources of uncertainty in the reasoning scenario. In the former case,
uncertainty is caused by the measurement period deviating from a constant reference period.
Viewing the period as a random variable, the standard deviation of its distribution can be used
to quantify the jitter value. Figure 5.4 illustrates how measurement jitter affects the measure-
ment of a time-varying quantity. Instead of obtaining measurements at fixed times T1 . . . Tn,
jitter causes the measurements to be obtained within the intervals T1 ± ∆T . . . Tn ± ∆T. When
measuring a time-varying quantity, the amplitude will vary by ∆A within the interval ∆T.
Since the progression of the measured quantity over time is unknown, the measurement er-
ror ∆A also remains unknown. However, a larger jitter value and thus a larger ∆T results in
greater uncertainty, represented by ∆A. Furthermore, the variability of the quantity must also
proportionally affect the uncertainty in the measured amplitude.

The second form of jitter, packet delay variation, affects uncertainty in the same way as the
first form does. Even if the sensor could theoretically take measurements with 0 measurement
jitter, any packet delay variation would obscure this fact on the receiver side, since the receiver
is incapable of discerning the contribution of measurement jitter to the experienced packet de-
lay variation.

Recency
Recency refers to how long ago a measurement serving as context information for the reasoner
was taken. The longer ago a measurement was taken, the less confidently the reasoning en-
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Figure 5.4: Effect of measurement jitter on a time-varying quantity

gine can infer facts about the current and future state of the spectral environment. The effect
of uncertainty caused by recency is exacerbated when measuring highly variable quantities. In
the reasoning scenario at hand, recency can be taken into account by evaluating timestamps of
measurements and adjusting the certainty in an inference accordingly.

In Section 4.1 the reasoner outputs were defined and a confidence value was determined to be
one of the outputs. The uncertainty factors presented in this section will be used to determine
the confidence in the inference made by the context reasoner.

5.5.2 Timing

In the scenario at hand, sensors are instantiated and instructed to take periodic measurements
of the spectral environment. Any measurement instrument takes a finite time to perform a
measurement. Depending on the application and scenario, the time it takes to measure the
parameters of interest might not be negligible.

Figure 5.5 illustrates the relevant time points and intervals during measuring and report-
ing. ∆TM is the time interval it takes the measurement instrument to perform a measurement.
∆TTx is the time interval it takes to transmit the measurement to the context reasoner, barring
transmission errors and retransmissions. TM1, TM2 . . . TMn are the time instants at which the
measurements conclude. These are the points in time to which the timestamps delivered in the
measurement reports refer. At time points TTX1, TTX2 . . . TTXn the measurement values are sent
from the sensor to the context reasoner. TRX1, TRX2 . . . TRXn are the time points at which the
client receives the measurements. ∆TR is the reporting interval which is simply the reciprocal
of the reporting rate.

Sensor measurement durations should be known to the client of the sensor so that appropri-
ate reporting rates can be requested, which are not in conflict with the measurement durations
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of the sensors. Measurement durations are the lower bounds on reporting rate, as the sensors
cannot report measurements with a faster rate than they can measure.

Figure 5.5: Timestamp, measurement duration, reporting period and transmission time of a measurement

Relative and Absolute Timing
When receiving measurements from a sensor, the context reasoner must relate the timestamps
of the measurements to its own internal clock. In particular, when receiving measurements
from several sensors which all report time according to their own internal clocks, the context
reasoner must bring those times together to make them comparable.

If the timestamps reported by the sensors are relative to some previous time, it is simply
a matter of adding the newly received timestamp to the previous timestamp. This requires
there to have been an exchange of a reference timestamp between the sensor instance and the
context reasoner, for instance during initialization of the sensor instance. If the reported times-
tamps by the sensors are absolute timestamps, the clock offsets between the sensor instances
and the context reasoner must be determined by some form of clock synchronization such as
IEEE 1588 [59], [60] before the exchange of any timestamped messages. In case the accuracy
requirements are not so stringent as to require a synchronization providing the accuracy of
IEEE 1588, absolute timestamps can be requested by a gettimeofday() call or an equivalent
function implemented on the sensors.

5.5.3 Reasoning Time Frames and Sliding Windows

To be able to make more accurate inferences about the current and future state of the spectral
environment, historical measurement data must be considered. To this end, the concept of
reasoning time frames is introduced. A reasoning time frame is simply the time interval from
which past data is taken into consideration. For instance, when using a reasoning time frame
of a 100 ms, only measurement data that was received within the last 100 ms will be used by
the reasoning engine.

Reasoning time frames can be implemented using sliding windows, as illustrated in Fig-
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ure 5.6. The size of the sliding window must be chosen to hold the exact number of values that
are reported within the desired reasoning time frame. With a sensor reporting rate Rr and a
reasoning time frame of ∆TTF the window size can be calculated as S = ∆TTF · Rr.

Depending on the rate at which reasoning iterations are started, the windows might overlap.
The benefit of using reasoning time frames and sliding windows becomes clear when consid-
ering the alternative, growing windows, shown in Figure 5.6. A growing window takes into
consideration all values since records began. This might be undesirable in a quickly changing
environment such as the one which is the spectral environment.

Figure 5.6: Implementing reasoning time frames with sliding windows

For a time frame of merely 10 minutes and a reporting rate of 100 Hz, which is one value every
10 ms, the window size would be 600,000. Since it might be inefficient to keep 600,000 values
in memory for each sensor, the mean of n subsequent values instead of every incoming value
can be stored in the sliding windows.

5.5.4 Trend and Prediction

When using the reasoning engine in a real environment, as a first step, real data of that envi-
ronment should be measured and analyzed. When working with real data one usually first
finds out the statistical properties of the data, such as the distribution or whether the stochas-
tic process can be assumed to be ergodic or stationary. Based on the findings of this analysis
appropriate statistical models can be chosen to model the process generating the data. Since
no real data will be used to test the proof of concept implementation, assumptions about the
statistical properties of the data generating processes will have to be made where necessary.

There are several ways to make a prediction about the future state of the spectral environ-
ment. Statistical models such as MA (Moving Average), EWMA (Exponentially Weighted Mov-
ing Average) [61], ARMA (Autoregressive Moving Average) or ARIMA (Autoregressive Inte-
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grated Moving Average) [62], [63] can be constructed and used to make predictions. These
models, however, require measuring and analyzing real data from the environment to identify
the underlying stochastic processes that generate the data.

A naive method of forecasting the next value from a history of measurements is to simply
predict the next value to be the same as the current value. While simple, this method works
quite well for financial and economic time series according to [64]. Another method would be
to predict the next value to be the average of the previous n values in some observation period.
In the absence of knowledge about the underlying stochastic processes and a statistical model,
these two naive methods can be applied. These two methods, however, fail to take the trend of
the measurements into consideration. The drift method is a variation of naive method, taking
trend into consideration by forecasting the next value to be the current value plus the average
change observed in the historical data. Using this method, the forecast for a forecast horizon h
and a set of historical data collected during the time interval T is given by:

yt +
h

T − 1

T

∑
t=2

(yt − yt−1) = yT + h(
yt − y1

T − 1
) (5.1)

Using the drift method for forecasting is equivalent to drawing a line between the first and
the last observed value and extrapolating that line into the future to make a prediction [64].

The drift forecast method will be used to predict the quality of links based on the current
observation the trend of past observations.



6 Implementation

In this chapter, relevant implementation details are presented and discussed. Third party soft-
ware and libraries used to implement the context reasoner are presented in Section 6.1, after
which the implementation of timing functionality is discussed in the next section. Section 6.3
sheds light on how threads and synchronization and signaling between the multiple threads
in this implementation were managed. In Section 6.4 a proof of concept design process of a
reasoner, its membership functions and rules is described.

6.1 Software and Libraries
The proof of concept implementation was developed in C++, as per the requirements, and
compiled with version 4.8.4 of the GNU gcc compiler. The development operating system
was Ubuntu 14.04. Following is an overview of the external software and libraries used in the
implementation.

6.1.1 Boost Libraries

The boost libraries [65] are a collection of C++libraries, simplifying the implementation of com-
mon programming tasks. The version used for this implementation is version 1.60.0. The main
libraries used in the implementation of the context reasoner are the following:

Boost Threading Library
The boost/thread library implements functionality to facilitate thread management and syn-
chronization between threads. Apart from thread creation and destruction, the threads library
was used to implement locking of critical sections, signaling and general synchronization be-
tween threads.

The boost libraries provide scoped lock types such as boost::unique_lock and boost::

shared_lock which automatically release any held mutexes in case of a thread failure, making
them an optimal choice for thread safe programming.

Boost Accumulators Library
The boost/accumulator library offers functionality for incremental statistical computation,
with the concept of accumulators at its core. Accumulators are data structures, which receive
data incrementally and update their internal state after every received datum. Since measure-
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ments are received one at a time by the concept reasoner, the accumulator library is an ideal
choice for processing those incremental measurements. The library offers functionality for var-
ious descriptive statistical computations and also supports implementation of sliding window
calculations.

Boost Chrono Library
The boost/chrono library provides timing functionality. Clocks with various resolutions and
accuracies are offered by the library. The main concepts and data types of the chrono library
are durations, time points and clocks.

• Duration: A duration represents an interval between two time points. Apart from the
predefined durations such as minutes, seconds and nanoseconds one can define their
own custom durations, representing the number of ticks per time unit.

• Time point: The time point type is used for representing a specific point in time. The
library defines operations on time points and durations to simplify working with timing
information.

• Clock: A clock type is a combination of a duration and a time point. The library offers
several clocks with different resolutions and other capabilities such as monotonicity. The
clock used in this implementation is the high_resolution_clock. It is a typedef for the
clock with the highest available resolution provided by the system.

Licensing
The boost libraries’ software license [66] explicitly permits commercial use of the boost libraries.
The license permits derivative work and modification of the original libraries for both commer-
cial and non-commercial use without any requirement to release the source code. Furthermore,
there is no obligation to reproduce any copyright messages. When releasing own code with
boost code in it, the boost license only applies to the boost code and derivatives thereof. In
particular, the own source code can be licensed with any other license.

6.1.2 Fuzzylite Library

The fuzzylite [67] library is a free and open source C++ and Java library for implementing fuzzy
logic controllers. It was implemented to overcome the shortcoming of similar projects, which
were either very costly, had restrictive licensing or overly complex implementations [68]. The
version used for the implementation is version 5.0.

Some features of the library are, support for five different types of fuzzy controllers, among
them the popular Mamdani and Takagi-Sugeno controllers, 20 different linguistic term mem-
bership function shapes and the ability to create custom membership functions. Furthermore,
there are 15 different t-norm and s-norm operators to choose from, among them the minimum
and maximum. Apart from the commonly used centroid defuzzification method, there are
six more, two of which allow weighted defuzzification. The six supported hedges, any, not,
extremely, seldom, somewhat and very, give the operator finer grained control of the rules.

A commercial graphical user interface named QtFuzzyLite, which simplifies designing rule
engines, can be used to design fuzzy systems with fuzzylite. Fuzzy control systems designed in
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the QtFuzzyLite GUI can be exported directly to C++ code. Figure 6.1 shows the GUI in which
fuzzy control systems can be designed. The figure depicts a sample fuzzy control system for a
washing machine, where the amount of detergent to be used and the length of the wash cycle is
determined based on the load and the amount of dirt. The linguistic input variables shown on
the left side along with their membership functions are Load and Dirt and the output variables
and their membership functions on the right side are Detergent and Cycle. The rules specifying
the logic of the controller can be seen at the bottom.

Figure 6.1: QtFuzzyLite GUI for designing fuzzy control systems

While there are other libraries for implementing fuzzy inference engines, the conclusion was
reached that the fuzzylite library was the most appropriate one to use for this implementation,
after researching alternative libraries.

Other libraries for implementing fuzzy systems include FuzzyClips [69], which is an exten-
sion to the CLIPS (C Language Integrated Production System) inference engine. FuzzyClips
has not been maintained in over 10 years. Furthermore there is FFIS (Fast Fuzzy Inference
System) [70], which has not been updated since 2013 and is poorly documented, and FisPro
(Fuzzy Inference System Professional) [71] and FFLL (Free Fuzzy Logic Library) [72], which
as well have not been maintained since 2013 and 2003 respectively. In [73], Cingolani et al.
compare 25 different fuzzy logic libraries, many of which either did not compile, are not main-
tained anymore or are written in Java.

FCL (Fuzzy Control Language), FLL (Fuzzy Lite Language) and FIS (Fuzzy Inference
System)
The fuzzylite library supports three different domain specific languages for designing fuzzy
control systems, namely FCL, FLL and FIS. By using one of these languages, fuzzy control
systems can be designed in a declarative manner and then be interpreted and compiled to C++
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code by fuzzylite.

• FCL: FCL is a standard language for describing fuzzy control systems, published by the
IEC (International Electrotechnical Commission). The syntax for FCL is specified in the
document IEC 61131-7. This document is not freely available, however, and must be
purchased. However, the draft of the standard is available and can be found in [74].

• FIS: FIS is the format implemented by Matlab used to describe fuzzy control systems.
Matlabs .fis files are fully supported by fuzzylite.

• FLL: FLL is the default language of fuzzylite and should be used to design fuzzy systems
with fuzzylite. It has been designed to be simpler and support more functionality than
FCL and FIS.

Python Parser Script
The inputs and outputs, the membership functions, the rules and other settings, such as de-
fuzzification method or inference operators, of a fuzzy inference system can all be defined in
one of the languages supported by the fuzzylite software described in the above. Alternatively,
the inference system can also be designed in fuzzylite’s graphical user interface depicted in
Figure 6.1.

Fuzzylite translates the designed fuzzy inference system to C++ code, which can then be
integrated in a C++ project.

To simplify the process and the workflow of designing a fuzzy inference system in one of the
fuzzy description languages and then integrating the generated code in the context reasoner
project, a python script has been written. The following steps are performed by the script:

• Parsing names: The fuzzylite program translates the names of the input and output lin-
guistic variables to C++ variable identifiers. Since C++ does not support reflection, these
identifiers must be referred to by their names when setting inputs or extracting outputs
from the reasoning engine in the C++ program.

• Generate C++ files: C++ code to correctly refer to the names in the context reasoner mod-
ules is generated. The generated files are header and implementation files for the fuzzy
reasoner modules described in Section 5.3 as well as definitions for the FRIN and FROUT
structures also mentioned in the same section.

Licensing
The fuzzylite library uses a dual-licensing model. One license is the GNU LGPL (Lesser Gen-
eral Public License) [GPL] and the other one is a paid commercial license. The LGPL license im-
poses the restriction on closed-source application of not being allowed to statically link against
the library.

6.2 Timers
As mentioned in Section 5.3 the dispatcher module implements a timer to periodically initiate
reasoning iterations, for which a time source is required. Furthermore, incoming measurement
values have to be timestamped by the context reasoner. Since the context reasoner potentially
operates in a quickly fluctuating environment and might receive measurements at high rates,
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high precision timing is required to keep timing related uncertainties and imprecisions at bay.

Most modern computers offer several hardware time sources. Apart from the relatively low
resolution motherboard-based clocks RTC (Real Time Clock) and the ACPI (Advanced Con-
figuration and Power Interface) [75], [76], [77] there is the HPET (High Precision Event Timer)
clock implemented in modern Intel chipsets, offering a higher resolution than the previously
mentioned clocks. Querying the HPET clock is expensive, however, as it is interrupt-based
[78].

The highest precision time source is TSC (Time Stamp Counter), which is a 64 bit register
in each CPU core that is updated during each CPU cycle. On multiprocessor systems, the
TSC should only be used as a time source if it supports a mode called invariant TSC, which
guarantees that the TSC registers are synchronized across all cores and are also invariant to
frequency scaling and power state changes [79].

For the implementation of the periodic timer and for timestamping incoming measurements,
a type was defined that encapsulates the boost high_resolution_clock introduced in Sec-
tion 6.1.1 and calls to read the TSC.

6.3 Threading and Synchronization
Boost Threads

As stated before, all modules run as separate threads. Threads are implemented with the help
of the boost/thread library. Each module overloads the () operator, making the modules
functors. When passing those module functor objects to the boost::thread constructor, the
code defined in the overloaded () operator function is called by boost.

Each module thread has a while loop that checks a has boolean variable that indicates whether
the thread should keep running. A signal handler is defined, capturing system signals to ter-
minate the process. When such a signal is received, the signal handler calls the boost/thread
interrupt() function on the threads. The interrupt() call throws an exception in the thread
on which it is being called. The exception is handled and the boolean variable is set to false.
This allows the threads to shut down gracefully rather than being stopped abruptly and do
clean up work if necessary before terminating.

SharedEvent Class

To synchronize shared memory access and to signal events between modules the SharedEvent
class was implemented. Underlying the SharedEvent class is a custom semaphore class im-
plementation, facilitating synchronization between multiple threads.

The custom semaphore implementation and the SharedEvent class built on top of it allow
one thread to act as an event dispatcher and a group of other threads as event handlers. Such
an interaction is required when the dispatcher module initiates a new reasoning iteration and
notifies the reasoning engines, of which there are more than one in threaded mode, as described
in Section 5.3. The reasoning engines receive the notification and start a new reasoning itera-
tion. Upon finishing, each reasoning engine must give a confirmation of having finished to the
dispatcher thread. The dispatcher thread must wait for all confirmations before being able to
start the next reasoning iteration.

Regarding communication between the reasoning engines and the collector module, the sit-
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uation is reversed. The reasoning engines are the threads that have to notify the collector mod-
ule of new data and the collector module is the thread that has to send a confirmation. The
SharedEvent class is implemented to support this mode, where there is a group of threads
that act as the dispatchers of events and single thread that acts as the handler, as well.

6.4 Proof of Concept Demonstration and Validation
This section demonstrates the proof of concept design of a fuzzy inference system for the prob-
lem addressed in this work. The rules and membership functions designed here only serve as
a demonstration and should be understood as such. Following the reasoner design demonstra-
tion, the validation of the designed system is discussed shortly.

6.4.1 Proof of Concept Fuzzy Design

Designing fuzzy inference systems is not an exact science and there exists no agreed upon rigor-
ous methodology for doing so. The human expert must encode their knowledge and expertise
into the fuzzy system as they see fit and modify and adapt the rules and the membership func-
tions by process of trial and error until the fuzzy inference system performs satisfactorily. The
membership functions for the linguistic variables and fuzzy rules must be determined accord-
ing to application requirements [10].

Such requirements could be an upper limit on the packet error rate or a maximum allowed
packet latency. From these application requirements the output and input parameters and their
membership functions and thresholds can be determined. The following output and input pa-
rameters are used in this demonstration:

Output parameters:

• Quality: A quality estimate taking a value between 0 and 1, 0 being the lowest quality
and 1 being the highest quality.

• Confidence: A certainty value associated with the stated quality estimate, 0 indicating no
certainty in the output and 1 indicating complete certainty.

• Quality for a 10 second time frame: The quality of the channel in the past 10 seconds.

• Confidence for the 10 second time frame: The certainty associated with the quality pre-
dictions based on the observed time frames.

• Prediction value: A value between 0 and 1 predicting the quality of the channel during
the next time frame.

Input parameters

• SNIR and noise: These values are used to determine the quality of the link.

• Percentage of values below a threshold:. Figure 6.2 illustrates two sample distributions
of measurement values. A threshold can be determined according to application require-
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ments below or above which values are desirable or undesirable. The percentage of the
values on the correct side of the threshold is used to determine the quality of the link in
the observation period.

• Standard deviation: Quantifies the variability of the channel and influences the confi-
dence of the reasoner.

• Count: The number of values that have been measured in the observation period.

• Recency: Says how old the values are.

• Measurement uncertainty and jitter:. Both directly affect the uncertainty of the measured
values and thus the confidence of the reasoner.

• Trend: Indicates the trend of the values in the observation period.

Figure 6.2: SNIR distribution and the threshold

Membership Functions and Rules
Once the requirements and the parameters have been determined, membership functions and
the rules of the fuzzy inference system can be designed. The design of membership functions
can be approached by first stating the domain expertise and intuitions in form of heuristics
that can be applied to the problem. These same heuristics can then be used as a basis for
determining the rules. Heuristics can be formulated like the following sample heuristics for
the problem at hand:

• A high SNIR and low noise power should give a high quality estimate.

• A low SNIR and a high noise power should give a low quality estimate.

• A low SNIR and a low noise power value or a high SNIR and a high noise power value
should give a medium quality estimate. This is because a link with a low SNIR should
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not be classified as a bad link if the noise power is also low, as that link can support robust
communication with the right settings.

• Unlike with the SNIR and the noise power, one low uncertainty factor should be enough
to bring down the entire confidence metric of the reasoner. For instance, if measurement
uncertainty is very low but there is high uncertainty associated with the recency of the
values because they are all old, then the total confidence of the inference should also be
low.

With the heuristics defined, the membership functions can be determined. Figure 6.3 shows
sample membership functions for the linguistic variable snir designed in the QtFuzzyLite GUI
for the proof of concept demonstration. The universe ranges from -20 to 40. The linguistic
variables of this term are low, medium and high and correspond to the yellow, orange and red
membership functions respectively. A value of around 15 dB has a membership of 0.388 in the
set of the low linguistic term and a membership of 0.457 in the set of the medium term. The
following assumptions were made when designing the membership functions:

• An SNIR value under 3 dB is considered low.

• An SNIR value of above 30 dB is considered high.

• An SNIR value between 10 and 30 dB is considered medium.

Figure 6.3: Membership functions for the snir linguistic variable designed in the QtFuzzyLite GUI

The rules of a fuzzy system reflect the intuition and heuristic knowledge of the system de-
signer or domain expert. Based on the heuristics stated above, some sample rules that were
determined are:

IF snir is low THEN quality is low.
IF snir is medium THEN quality is medium.
IF snir is high THEN quality is high.

IF noisepower is low THEN quality is high.
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IF noisepower is medium THEN quality is medium.
IF noisepower is high THEN quality is low.

The full set of rules and the specification of the fuzzy systems can be seen in Appendix 3

6.4.2 Validation

In [80], Knauf et al. propose a framework for validation of rule-based systems. It includes gen-
erating a minimal set of test values covering the entire domain of inputs and then comparing
the outputs of the rule-based system to that of a human expert. This methodology was applied
to validate the proof of concept implementation.

To validate the fuzzy system, random values were generated and sent to the context rea-
soner as inputs. These values did not follow any particular distribution and were only used to
verify that the context reasoner and the designed fuzzy inference system work correctly. Two
reasoners were designed, one which delivers an output for every incoming value and one that
makes inferences about a time frame of past values. The reasoners use a Mamdani type infer-
ence with the min operator as activation an conjunction and the max operator as disjunction.
Defuzzification is performed with the centroid method.

Figure 6.4 depicts the generated inputs and the outputs of the fuzzy inference engine for the
instant reasoner. In the first and second plot the SNIR, the noise power and the jitter inputs
are shown. The third plot shows the outputs of the inference engine. The quality estimate is
highest, when the SNIR is high and the noise power is low. Furthermore, the confidence in
the output is low when the jitter is high and high when the jitter is low. This behavior is in
accordance with the heuristics stated in Section 6.4.1.

Figure 6.5 shows the graphs for the 10 second reasoner. The outputs appear cascaded, be-
cause the engine in the 10 second reasoner repeatedly outputs a value for the same input, until
its next reasoning iteration. Around the 1000th index the quality is very high, which is where
both the percentage of the SNIR and the noise power are also high. The percentage value rep-
resents the amount of values that are on the desirable side of a given threshold, which is why a
high noise power percentage leads to a high quality output.

The prediction value in this proof of concept demonstration only takes into account the trend
of the SNIR. The similarity of their progressions indicates that the rules work correctly.

As expressed in the heuristics in the previous subsection, one uncertainty factor is enough
to bring down the confidence in an inference. In this case, the high standard deviation has
a significant negative impact on the confidence value of the reasoner almost throughout the
measurements. At about the 500th index, where the standard deviation dips, the confidence
value of the reasoner spikes, once again showing that the reasoner operates correctly.

Performance Evaluation

Since a thorough performance evaluation outside of the real environment in which the rea-
soner will operate is not very meaningful, none was performed. However, while validating the
rules, timestamps were taken at the initiation of every reasoning period. During these mea-
surements the context reasoner received measurements from 4 different simulated sensors and
was running in threaded mode. The dispatcher module was set to initiate a reasoning period
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Figure 6.4: SNIR, noise power and jitter inputs and the outputs of the instant reasoner

every 10 ms. The mean achieved reasoning period was about 12.6 ms with a standard devi-
ation of about 5 ms. Keeping in mind that these tests were run on a non-real-time operating
system with scheduler preemption and other processes running, the achieved performance is
satisfactory. Further tests, however, require knowledge of a target architecture on which the
context reasoner shall run, to be able design sensible and meaningful test scenarios.
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Figure 6.5: SNIR percentage, noise power percentage and standard deviation inputs and the outputs of the
10 second reasoner





7 Conclusion

This chapter concludes the thesis. Section 7.1 gives a summary of the work done and the results
accomplished. Section 7.2 provides an outlook on possible future work.

7.1 Summary
In this thesis a context reasoner for dynamic spectrum access wireless communication was
designed and a proof of concept implementation realized. The following work steps were
taken in the course of this thesis:

• State of the art analysis:

State of the art approaches to reasoning were researched and the results presented in
Chapter 2. The approaches presented were rule-based reasoning, ontology-based rea-
soning, artificial neural networks and fuzzy reasoning. A fuzzy reasoning approach was
chosen for the implementation of the context reasoner, as its capabilities were the most
aligned with the objectives and requirements of this work.

• Context space analysis:

A thorough analysis of the dynamic spectrum management context space was conducted,
revealing complex interdependencies between the parameters, further justifying a rea-
soning approach rather than an algorithmic one.

• Interface messages specified:

As the reasoner will operate in an environment where it receives sensing reports from
radios, interface messages for communication between the radios and the reasoner were
defined and integrated with existing FleMMingo interface specifications in [81].

• Context reasoner designed:

The context reasoner was designed. The design was chosen to be modular and flexible,
extensively making use of threads, enabling the context reasoner to handle several context
sources concurrently.

• Proof of concept implementation:

A proof of concept context reasoner implementation was realized. To validate the imple-
mentation, basic rule sets were demonstrated that can be used to indicate the best spec-
trum regarding latency and robustness and to indicate the best future spectrum based
on past observations. Tests performed with synthetically generated data showed that the
rules and the reasoner work correctly. Furthermore, the implementation was documented
All requirements and objectives set were addressed during the design and implementa-
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tion of the context reasoner.

• Documentation:

The implementation was documented, enabling any future implementers to understand
the inner workings of the code base.

7.2 Outlook
Implementing Interfaces and Integration in Spectrum Manager

While the interfaces and messages for communication between the context reasoner and the
other entities in the spectrum manager environment were defined, they have not been imple-
mented. As a next step, this implementation should follow, so that the context reasoner can
be integrated into the spectrum manager architecture. Once this integration has occurred, the
performance of the context reasoner in a real environment can be observed and tuned.

Adaptively Tuning Parameters
Furthermore, during the design of the fuzzy system, the membership functions had to be

chosen as well as thresholds for where a good SNIR or noise power value starts and ends. Those
thresholds are fixed and might not be optimal. The fuzzy inference system could be extended
to adaptively change its membership functions to optimize the quality of its outputs. This
requires some sort of feedback loop, so that the reasoning engine can learn from its previous
outputs.

One way of adaptively changing the membership functions and thresholds in a fuzzy system
is by combining it with an artificial neural network. One combination of artificial neural net-
works and fuzzy systems is ANFIS (Adaptive-Network-Based Fuzzy Inference System) [82].
ANFIS combines the learning ability of artificial neural networks with the possibility of en-
coding human knowledge in the reasoning engine. Apart from using a combination of neural
networks and fuzzy inference to adaptively change the parameters of the fuzzy system, such a
combination can also be used to increase learning speed in neural networks, by adding human
knowledge to the neural network [83]. Furthermore, a combination of neural networks and
a fuzzy inference system can also be used to preprocess incoming values with one of the two
systems and feed the processed outputs into the second system.

Another interesting way of enhancing fuzzy inference systems is with genetic algorithms.
As with neural networks, genetic algorithms can be used to tune the parameters of the fuzzy
system to optimize its performance [84].

Hierarchical Fuzzy System
As the number of inputs and outputs in a fuzzy system grows, so does the number of rules.

In fact, the number of possible rules in a fuzzy system increases exponentially with the number
of input variables [85]. Hierarchical fuzzy systems can be used to combat the rule-explosion
problem in fuzzy inference system, as the number of rules in hierarchical fuzzy systems only
increase linearly with the number input variables [85]. Due to the flexible architecture of the
context reasoner implemented, it could be modified to use the outputs from one fuzzy reasoner
as the inputs of another one.



7.2. Outlook 65

User Interface
So far the context reasoner is a simple console application. To make it more accessible and to

simplify working with it, an HTML or some other graphical user interface could be designed
and implemented. Such an interface could include the possibility of specifying and modifying
rules and other aspects of the context reasoner without having to recompile and redeploy the
program. Such an extension would make the context reasoner even more flexible.

.
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Appendix

1 Appendix 1: FROUT type definition
The FROUT structure type definition for the proof of concept instant reasoner and 10 second reasoner.

The fl:: namespace is the namespace of the fuzzylite library. The scalar type is simply a typedef for
double or float depending on how the library was compiled. The definition of this struct reflects the
output messages shown in Appendix 2

1 struct FROUT {
2

3 uint16_t portfolioID;
4

5 //Instant
6 fl::scalar quality_value;
7 fl::scalar confidence_value;
8 long long timestamp_value;
9

10

11 //10s
12 fl::scalar quality_value_10s;
13 fl::scalar confidence_value_10s;
14 fl::scalar prediction_value_10s;
15 long long timestamp_value_10s;
16

17

18

19 };

2 Appendix 2: Interface listing
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The following parameters and messages structures are proposals for the interface between the context
reasoner and the decision engine. Parameters such as transaction identifiers, and result codes are
omitted for brevity as they can be adopted from the definitions in [81]. Primitives are assumed to be
the same ones as defined in [81]. Examples are only given for SET.

Table 1: Interface parameters and structures for reasoner output

Instantaneous quality estimate based on instantaneous measurement
Name Range Description
Quality [0-1] Indicates the quality of the spectral band
Certainty value [0-1] Indicates the certainty of the estimate

Long term quality over a reasoning time frame. Includes prediction
Name Range Description
Quality [0-1] Indicates the quality estimate based on the observed time frame
Certainty value [0-1] Indicates the certainty of the inference made
Prediction value [0-1] Indicates the prediction estimate for the time frame

Quality output value structure
Struct {

Inst. quality estimate
} Long term quality estimate [ ]

SET.rsp {
Quality output value structure
Portfolio ID

} Timestamp as defined in [81]
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Much like measurement settings on the sensor instances, the context reasoner should also define
adjustable settings. Following are proposed interface parameters and messages for this purpose.

Table 2: Interface parameters and structures for setting the context reasoner settings

Context reasoner settings
Name Range Description
Reporting period (0-232] ms Reporting period for the instantaneous estimates
Reasoning time frame (0-232] ms Length of reasoning time frame in ms
Prediction horizon (0-232] ms Prediction horizon in ms
Time frame reporting period (0-232] ms Explanation below

Time frame reporting period: When setting a reasoning time frame, a reporting period for quality esti-
mates about that time frame should also be set. For instance, when requesting estimates about the
past 10 minutes one could set the reporting period for that time frame to 2 minutes, as receiving an
update about a 10 minute reasoning time frame every 10 ms would be unnecessary.

Time frame settings
Struct {

Reasoning time frame
Prediction horizon

} Time frame reporting period

Settings value structure
Struct {

Reporting period
} Time frame settings [ ]

SET.rsp/req {
} Settings value structure
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3 Appendix 3: Interface listing
FLL file for Fuzzy Reasoner for instant quality inferences:

1

2 Engine: FuzzyReasonerInstant
3 InputVariable: snir
4 enabled: true
5 range: -20.000 40.000
6 term: low Ramp 22.800 3.000
7 term: medium Triangle 11.000 20.000 30.000
8 term: high Ramp 19.000 30.000
9 InputVariable: noisepower

10 enabled: true
11 range: -140.000 80.000
12 term: low Ramp -90.000 -120.000
13 term: medium Triangle -126.600 -90.400 -56.400
14 term: high Ramp -67.000 20.000
15 InputVariable: meas_uncert
16 enabled: true
17 range: 0.000 1.000
18 term: low Ramp 0.300 0.050
19 term: medium Triangle 0.100 0.200 0.300
20 term: high Ramp 0.200 0.600
21 InputVariable: jitter
22 enabled: true
23 range: 0.000 10.000
24 term: low Ramp 5.100 1.000
25 term: medium Triangle 2.500 5.000 7.500
26 term: high Ramp 4.900 9.000
27 InputVariable: time_passed
28 enabled: true
29 range: 0.000 1000.000
30 term: short Ramp 510.000 100.000
31 term: medium Triangle 250.000 500.000 750.000
32 term: long Ramp 490.000 900.000
33 OutputVariable: confidence
34 enabled: true
35 range: 0.000 1.000
36 accumulation: Maximum
37 defuzzifier: Centroid 200
38 default: nan
39 lock-previous: false
40 lock-range: false
41 term: low Ramp 0.500 0.100
42 term: medium Triangle 0.250 0.500 0.750
43 term: high Ramp 0.500 0.900
44 OutputVariable: quality
45 enabled: true
46 range: 0.000 1.000
47 accumulation: Maximum
48 defuzzifier: Centroid 200
49 default: nan
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50 lock-previous: false
51 lock-range: false
52 term: low Ramp 0.500 0.100
53 term: medium Triangle 0.250 0.500 0.750
54 term: high Ramp 0.500 0.900
55 RuleBlock: snir_quality
56 enabled: true
57 conjunction: Minimum
58 disjunction: Maximum
59 activation: Minimum
60 rule: if snir is low then quality is low
61 rule: if snir is medium then quality is medium
62 rule: if snir is high then quality is high
63 RuleBlock: noise_quality
64 enabled: true
65 conjunction: Minimum
66 disjunction: Maximum
67 activation: Minimum
68 rule: if noisepower is low then quality is high
69 rule: if noisepower is medium then quality is medium
70 rule: if noisepower is high then quality is low
71 RuleBlock: confidence
72 enabled: true
73 conjunction: Minimum
74 disjunction: Maximum
75 activation: Minimum
76 rule: if meas_uncert is high or jitter is high or time_passed is long then

confidence is very low
77 rule: if meas_uncert is low and jitter is low and time_passed is short then

confidence is high
78 rule: if meas_uncert is medium and jitter is medium and time_passed is medium

then confidence is medium

FLL file for Fuzzy Reasoner for quality inferences over the last 10 seconds:
1

2 Engine: Reasoner10s
3 InputVariable: snir_percentage
4 enabled: true
5 range: 0.000 1.000
6 term: low Ramp 0.820 0.400
7 term: medium Triangle 0.560 0.710 0.860
8 term: high Ramp 0.720 0.950
9 InputVariable: noisepower_percentage

10 enabled: true
11 range: 0.000 1.000
12 term: low Ramp 0.750 0.170
13 term: medium Triangle 0.550 0.640 0.770
14 term: high Ramp 0.640 0.980
15 InputVariable: stddev
16 enabled: true
17 range: 0.000 15.000
18 term: low Ramp 7.850 3.150
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19 term: medium Triangle 4.900 6.950 9.600
20 term: high Ramp 7.050 11.250
21 InputVariable: time_passed
22 enabled: true
23 range: 0.000 1000.000
24 term: short Ramp 510.000 100.000
25 term: medium Triangle 250.000 500.000 750.000
26 term: long Ramp 490.000 900.000
27 InputVariable: trend
28 enabled: true
29 range: -10.000 10.000
30 term: negative Ramp 1.000 -7.000
31 term: positive Ramp -1.000 7.000
32 InputVariable: snir
33 enabled: true
34 range: -20.000 40.000
35 term: low Ramp 22.800 3.000
36 term: medium Triangle 11.000 20.000 30.000
37 term: high Ramp 19.000 30.000
38 InputVariable: cnt
39 enabled: true
40 range: 0.000 200.000
41 term: low Ramp 100.000 20.000
42 term: medium Triangle 50.000 100.000 150.000
43 term: high Ramp 100.000 180.000
44 OutputVariable: confidence
45 enabled: true
46 range: 0.000 1.000
47 accumulation: Maximum
48 defuzzifier: Centroid 200
49 default: nan
50 lock-previous: false
51 lock-range: false
52 term: low Ramp 0.500 0.100
53 term: medium Triangle 0.250 0.500 0.750
54 term: high Ramp 0.500 0.900
55 OutputVariable: quality
56 enabled: true
57 range: 0.000 1.000
58 accumulation: Maximum
59 defuzzifier: Centroid 200
60 default: nan
61 lock-previous: false
62 lock-range: false
63 term: low Ramp 0.500 0.100
64 term: medium Triangle 0.250 0.500 0.750
65 term: high Ramp 0.500 0.900
66 OutputVariable: prediction
67 enabled: true
68 range: 0.000 1.000
69 accumulation: Maximum
70 defuzzifier: Centroid 200
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71 default: nan
72 lock-previous: false
73 lock-range: false
74 term: high Ramp 0.500 0.900
75 term: low Ramp 0.500 0.100
76 term: medium Triangle 0.250 0.500 0.750
77 RuleBlock: snir_quality
78 enabled: true
79 conjunction: Minimum
80 disjunction: Maximum
81 activation: Minimum
82 rule: if snir_percentage is low then quality is low
83 rule: if snir_percentage is medium then quality is medium
84 rule: if snir_percentage is high then quality is high
85 RuleBlock: noise_quality
86 enabled: true
87 conjunction: Minimum
88 disjunction: Maximum
89 activation: Minimum
90 rule: if noisepower_percentage is low then quality is low
91 rule: if noisepower_percentage is medium then quality is medium
92 rule: if noisepower_percentage is high then quality is high
93 RuleBlock: confidence
94 enabled: true
95 conjunction: Minimum
96 disjunction: Maximum
97 activation: Minimum
98 rule: if stddev is high or time_passed is long or cnt is low then confidence

is low
99 rule: if stddev is low and time_passed is short and cnt is high then

confidence is high
100 rule: if stddev is medium and time_passed is medium and cnt is medium then

confidence is medium
101 RuleBlock: prediction
102 enabled: true
103 conjunction: Minimum
104 disjunction: Maximum
105 activation: Minimum
106 rule: if trend is negative and snir is low then prediction is low
107 rule: if trend is positive and snir is high then prediction is high
108 rule: if trend is positive and snir is low then prediction is medium
109 rule: if trend is negative and snir is high then prediction is medium
110 rule: if trend is positive and snir is medium then prediction is medium


	Acronyms
	Introduction
	Introduction and Motivation
	Objectives and Scope
	Outline

	State of the Art and Related Work
	Rule-Based Systems
	Ontology-based Reasoning
	Artificial Neural Networks
	Fuzzy Inference Systems
	Related Work

	Methodology
	Parameters
	Output Parameters
	Input Parameters
	Parameter Reduction

	Concept and Design
	Requirements
	High Level Data Flow Architecture
	Context Reasoner Architecture
	Interfaces and Messages
	Preliminary Considerations
	Uncertainty
	Timing
	Reasoning Time Frames and Sliding Windows
	Trend and Prediction


	Implementation
	Software and Libraries
	Boost Libraries
	Fuzzylite Library

	Timers
	Threading and Synchronization
	Proof of Concept Demonstration and Validation
	Proof of Concept Fuzzy Design
	Validation


	Conclusion
	Summary
	Outlook

	List of Tables
	List of Figures
	Bibliography
	Appendices
	Appendix
	Appendix 1: FROUT type definition
	Appendix 2: Interface listing
	Appendix 3: Interface listing


